
IMPLEMENTATION AND VERIFICATION OF A CPU SUBSYSTEM FOR
MULTIMODE RF TRANSCEIVERS

by

Waqas Ahmed
<waqasw@kth.se>

Supervisor:

Brandstaetter Siegfried
Infineon Technologies (DICE), Austria

Internal Supervisor:

Ahmed Hemani
Professor, Royal Insitute of Technology (KTH)

A thesis submitted to the faculty of Royal Institute of Technology (KTH) in partial fulfillment of
the requirements for the degree of

Masters of System on Chip Design

Department of Information and Communication Technology

Royal Institute of Technology, Sweden

May 2010

mailto:{waqasw@kth.se}

ABSTRACT

IMPLEMENTATION AND VERIFICATION OF A CPU SUBSYSTEM FOR
MULTIMODE RF TRANSCEIVERS

Waqas Ahmed

Department of ICT

Master of Science

Multimode transceivers are becoming a very popular implementation alterna-
tive because of their ability to support several standards on a single platform. For
multimode transceivers, advanced control architectures are required to provide flex-
ibility, reusability, and multi-standard support at low power consumption and small
die area effort. In such an advance control architecture theCPU Subsystem func-
tions as a central control unit which configures the transceiver and the interface for
a particular communication standard.

Open source components are gaining popularity in the marketbecause they not
only reduce the design costs significantly but also provide power to the designer due
to the availability of the full source code. However, open source architectures are
usually available as poorly verified and untested intellectual properties (IPs). Before
they can be commercially adapted, an extensive testing and verification strategy is
required. In this thesis we have implemented a CPU Subsystemusing open source
components and performed the functional verification of this Subsystem. The main
components of this CPU Subsystem are (i) an open source OpenRISC1200 core,
(ii) a memory system, (iii) a triple-layer Sub-bus system and (iv) several Wishbone
interfaces. The OpenRISC1200 core was used because it is a 32-bit core ideally
suited for applications requiring high performance while having low-cost and low
power consumption. The verification of a 5-stage pipeline processor is a challeng-
ing task and to the best of our knowledge this is the first attempt to verify the Open-
RISC1200 core. The faults identified as a result of the functional verification will
not only prove useful for the current project but will likelymake the OpenRISC1200
core a more reliable and commercially used processor.

ACKNOWLEDGMENTS

First of all, I would like to thank God, the Almighty, for having made everything
possible for me by giving me strength and courage to do this work.

My deepest gratitude to Brandstaetter Siegfried, my supervisor, for his un-
selfishness, encouragement and guidance and patience he demonstrated during my
work.

Further I would like to thank my examiner Professor Ahmed Hemani at the
Department of Information and Communication Technology atRoyal Insitute of
Technology (KTH) for undertaking my Master’s thesis.

I am also deeply indebted to Professor Andreas Springer at Institute of Commu-
nication Engineering and RF-Systems at Johannes Kepler University for offering
me this opportunity.

I would also like to thank the other employees at DICE and especially Dr. Neu-
rauter Burkhard, Dr. Hueber Gernot and Steinmayr Christianfor every help during
my work.

Sincere thanks to my family, relatives and friends who all gave me courage and
support.

Contents

Table of Contents iv

List of Figures viii

1 Introduction 1

2 System Environment and Organization 4
2.1 Introduction. 4
2.2 System Description. 4

2.2.1 Overview . 4
2.2.2 Advanced Control Architecture for Multimode RF Transceivers . . 5
2.2.3 Structural Design of the CPU Subsystem. 6
2.2.4 Classification of the Project Objectives. 7

2.3 Wishbone Interconnection Standard. 8
2.3.1 Overview . 8
2.3.2 Wishbone Interface Specifications. 9
2.3.3 Maximum Throughput Constraints on the Wishbone. 13

2.4 Memory System of the CPU Subsystem. 15
2.4.1 Overview . 15
2.4.2 Random Access Memory (RAM). 15
2.4.3 Read Only Memory (ROM). 16

2.5 Triple-layer Sub-bus System. 18
2.5.1 Overview . 18
2.5.2 Sub-bus Specifications. 19
2.5.3 Sub-bus Architecture. 19
2.5.4 Fundamental Characteristics of Sub-bus. 25

2.6 The OpenRISC1200 Processor. 26
2.6.1 General Description. 26
2.6.2 Performance. 26
2.6.3 The OpenRISC1200 Architecture. 27

iv

CONTENTS v

2.6.4 Central Processing Unit (CPU/DSP). 29
2.6.5 OpenRISC1200 Instruction Pipeline. 32

2.7 Maximum Throughput Restrictions on Subsystem. 37
2.8 Simulation Framework. 37

2.8.1 Overview . 37
2.8.2 OpenRISC1200 GNU Toolchain. 38
2.8.3 Simulation Setup for the CPU Subsystem. 41

3 Verification Fundamentals 44
3.1 Introduction. 44
3.2 Functional Verification. 44

3.2.1 General Description. 44
3.2.2 Verification Approaches. 44
3.2.3 Verification Challenges . 46

3.3 Verification Technologies. 46
3.3.1 Overview . 46
3.3.2 Simulation-based Verification. 47
3.3.3 Formal Verification. 47
3.3.4 Formal Verification vs Simulation-based Verification. 49

3.4 Verification Methodologies. 49
3.5 Verification Cycle. 50
3.6 Verification Environment. 51

3.6.1 Introduction. 51
3.6.2 Interface Verification Component (IVC). 52
3.6.3 Module/System Verification Component. 53

3.7 Open Verification Methodology (OVM). 54
3.7.1 Introduction. 54
3.7.2 OVM and Coverage Driven Verification (CDV). 55
3.7.3 OVM Test bench and Environments. 55

3.8 OVM Class Library. 57
3.8.1 Transaction-level Modeling (TLM). 57

3.9 SystemC. 58
3.10 SystemVerilog Direct Programming Interface (DPI). 58

3.10.1 Overview. 58

4 Functional Verification of CPU Subsystem 60
4.1 Introduction. 60
4.2 Functional Verification of Memory System. 60

4.2.1 Verification plan . 60
4.2.2 Test Bench. 62

4.3 Functional Verification of Triple-layer Sub-bus. 63
4.3.1 Verification plan . 63
4.3.2 Test bench . 65

CONTENTS vi

4.4 Functional Verification of OR1200 Core. 66
4.4.1 Verification plan . 66
4.4.2 Instruction Set Simulator as a Reference Model. 67
4.4.3 SystemC Wrapper around Reference Model. 71
4.4.4 SystemVerilog Wrapper around OR1200 Core. 75

4.5 Verification Environment for OR1200 Core. 75
4.5.1 Description. 75
4.5.2 Main Test Bench for OR1200 Core. 78

5 Results 84
5.1 Introduction. 84
5.2 CPU Subsystem Simulations Results. 84

5.2.1 Overview . 84
5.2.2 Execution Results. 85
5.2.3 Maximum Throughput Results. 86

5.3 Memory System Verification Results. 87
5.3.1 Overview . 87
5.3.2 RAM Verification Results . 87

5.4 Sub-Bus System Verification Results. 90
5.4.1 Overview . 90
5.4.2 Tests Stimuli Execution. 90
5.4.3 Sub-Bus Verification Coverage Results. 90

5.5 OpenRISC1200 Error Reports. 93
5.5.1 Overview . 93
5.5.2 Extend Half Word with Sign (l.exths) Instruction. 93
5.5.3 Add Signed and Carry (l.addc) Instruction. 98
5.5.4 Divide Signed (l.div) Instruction. 107
5.5.5 Find Last 1 (l.fl1) Instruction. 110
5.5.6 Multiply Immediate Signed and Accumulate (l.maci) Instruction . . 114
5.5.7 Multiply Immediate Signed (l.muli) Instruction. 118
5.5.8 Multiply Unsigned (l.mulu) Instruction. 121
5.5.9 Unimplemented Overflow Flag (OV). 124

5.6 Discrepancies Between OR1200 and Golden Model. 125
5.6.1 Overview . 125
5.6.2 Jump Register and Link (l.jalr) and Jump Register (l.jr) Instructions 125
5.6.3 Add Immediate Signed and Carry (l.addic) Instruction. 128
5.6.4 Load Single Word and Extend with Sign (l.lws) Instruction 131
5.6.5 MAC Read and Clear (l.macrc) Instruction. 134
5.6.6 Rotate Right (l.ror) Instruction. 136
5.6.7 Rotate Right with Immediate (l.rori) Instruction. 139
5.6.8 Move to/from Special Purpose Registers (l.mtspr/l.mfspr) 141

5.7 The OpenRISC1200 Verification Coverage Results. 141
5.7.1 Overview . 141

CONTENTS vii

5.7.2 OR1200 Functional Verification Coverage. 141

6 Conclusions and Future Work 147
6.1 Conclusions. 147
6.2 Future Work. 148

A Appendices 149
A.1 Software development. 149

A.1.1 Test application program. 149
A.1.2 Disassembly file of the test program. 150
A.1.3 Linker Script . 154
A.1.4 Startup Script . 156
A.1.5 A Sample Makefile . 157

A.2 Functional Verification of the OR1200 core. 158
A.2.1 Empty ELF file . 158
A.2.2 Configuration File for the Or1ksim Library. 158
A.2.3 Modifications in the ISS. 161

A.3 ISS implementation of instructionsl.jalr andl.jr 162
A.4 ISS implementation of instructionl.mtspr 164

Bibliography 165

B List of Acronyms 167

List of Figures

2.1 CPU subsystem within advanced control architecture.. 5
2.2 The CPU Subsystem.. 6
2.3 Point-to-point connection between the Wishbone Masterand Slave. 9
2.4 Wishbone handshaking protocol.. 12
2.5 Wishbone classical single READ cycle [6]. 12
2.6 Wishbone classical single WRITE cycle [6]. 12
2.7 Wishbone classical block cycles [6]. 13
2.8 Wishbone asynchronous cycle termination path [4]. 13
2.9 Wishbone classic synchronous cycle terminated burst [4]. 14
2.10 Wishbone advanced synchronous terminated burst [4]. 14
2.11 32-bit Random Access Memory (RAM).. 15
2.12 Sequential single transfer WRITE/READ.. 16
2.13 32-bit Read Only Memory (ROM).. 17
2.14 The ROM initialization.. 18
2.15 Sub-bus architecture (Master to Slave interfaces interconnects).. 20
2.16 Sub-bus architecture (Slave to Master interfaces interconnects).. 21
2.17 Address decoder.. 23
2.18 Address decoder waveform.. 23
2.19 Fixed priority arbiter.. 24
2.20 Fixed priority based arbitration.. 25
2.21 The OpenRISC1200 processor.. 26
2.22 The OpenRISC1200 architecture.. 27
2.23 Central Processing Unit (CPU/DSP).. 30
2.24 The OpenRISC1200 pipeline stages [13]. 32
2.25 Registers abstraction of the OR1200 pipeline [14]. 33
2.26 Behavioral view of the OpenRISC1200 pipeline [14]. 35
2.27 Intel HEX memory initialization file (IHex).. 39
2.28 Encoding of the Intel HEX format.. 40
2.29 Linker script’s snapshot.. 41
2.30 Sub-bus configuration’s snapshot.. 42

viii

LIST OF FIGURES ix

3.1 Verification cycle.. 51
3.2 Abstract view of a verification environment.. 52
3.3 Block diagram of the interface verification component.. 53
3.4 Block diagram of the module/system verification component. 54

4.1 RAM Test bench.. 63
4.2 RAM address space subdivision.. 64
4.3 Test bench for triple-layer Sub-bus system.. 65
4.4 Golden model for the verification of the OR1200 core.. 74
4.5 SystemVerlog wrapper around the OR1200 core.. 76
4.6 Verification environment for the OR1200 core.. 77
4.7 Main Test bench for the verification of the OR1200 core.. 78
4.8 Interface verification component.. 79
4.9 Module monitor. 81

5.1 CPU Subsystem’s correct instruction fetch.. 85
5.2 CPU Subsystem’s execution result.. 86
5.3 CPU Subsystem’s maximum throughput results.. 87
5.4 Tests’ execution of the functional verification of RAM.. 88
5.5 Sequential single WRITE/READ access result.. 88
5.6 Random single WRITE/READ access result.. 89
5.7 Random block WRITE access result.. 89
5.8 Random block READ access result.. 90
5.9 Tests’ execution of the functional verification of Sub-bus system.. 91
5.10 Sub-bus verification coverage results.. 92
5.11 Execution results ofl.exths on the ISS. 94
5.12 Results mismatch ofl.exths from the OR1200 core and the ISS.. 95
5.13 Simulation results ofl.exths on the OR1200 core.. 97
5.14 Results mismatch ofl.addc from the OR1200 and the ISS.. 102
5.15 Results mismatch ofl.addc from the OR1200 core and the ISS.. 104
5.16 Simulation results ofl.addc on the OR1200 core. 106
5.17 Instructionl.div generates an illegal exception at the ISS.. 108
5.18 Simulation results ofl.div on the OR1200 core.. 109
5.19 Execution results ofl.fl1 on the ISS.. 111
5.20 Simulation results ofl.fl1 on the OR1200 core.. 113
5.21 Execution results ofl.maci on the ISS. 115
5.22 Simulation results ofl.maci on the OR1200 core. 117
5.23 Results mismatch ofl.muli from the OR1200 core and the ISS.. 119
5.24 Simulation results ofl.muli on the OR1200 core. 120
5.25 Simulation results ofl.mulu on the OR1200 core. 123
5.26 Problem withl.jalr andl.jr in the ISS.. 127
5.27 Verification coverage results ofl.jalr andl.jr. 128
5.28 Instructionl.addic generates an illegal exception at the ISS.. 129

LIST OF FIGURES x

5.29 Simulation results ofl.addic on the OR1200 core.. 130
5.30 Instructionl.lws generates an illegal exception at the ISS.. 131
5.31 Simulation results ofl.lws on the OR1200 core.. 133
5.32 Execution results ofl.macrc on the ISS. 135
5.33 Results mismatch ofl.macrc from the OR1200 core and the ISS.. 136
5.34 Simulation results ofl.ror on the OR1200 core.. 138
5.35 Simulation results ofl.rori on the OR1200 core. 140
5.36 Functional verification coverage of the OR1200 core.. 146

List of Tables

3.1 Simulation values of Equation (3.1).. 49
3.2 Formal proof of Equation (3.1).. 49

5.1 OR1200 instruction set.. 142

xi

Chapter 1
Introduction

WIRELESScommunication is a rapidly growing division of communication indus-
try in which high quality information can be transferred at high-speed between
the portable devices located anywhere in the world. Applications of wireless tech-

nology are everywhere including cell phones, home appliances, teleconferencing, satellite
communication and much more. However, the development of the wireless systems is a
considerable challenge.

Every device that incorporates wireless communication typically comprises of three
core components: (i) the transceiver, (ii) the baseband circuit and (iii) the interface be-
tween them. Thetransceiveris a mixed-signal part of a wireless system whereas the
other two parts are typically digital components. Thebasebandincludes digital signal
processors (DSPs) and it mostly operates as a part of a complex System on Chip (SoC).
The interfaceis an important component mainly used for the communicationof data and
control-information between the transceiver and the baseband components. This control-
information contains the commands to control the transceiver’s chains (transmitter and re-
ceiver). In earlier days, the interfaces were implemented as an analog component of the
wireless systems. However, the integration of a wireless system having an analog interface
within a complex SoC is a challenging task. A feasible solution for this problem is to use
the digital interfaces which are easier to integrate withinthe complex systems [1].

An RF transceivertypically comprises of a transmitter and a receiver. The transmitter
modulates a digital signal, converts it to the analog domain, up-converts it to high frequen-
cies, amplifies the signal and transmits it. The receiver works in the opposite direction of
the transmitter. The receiver receives signals from the RF antenna, conditions the low-level
signals, down-converts the high frequency signals to a lower intermediate frequency (IF),
converts them into the digital domain and demodulates them [2]. The design and imple-
mentation of an RF transceiver block for wireless systems isa challenging task.

In recent times, several standards for the wireless communication (e.g. GSM, UMTS,
LTE, WLAN) exist in the contemporary market. RF transceivers have to process the sig-
nals according to the specifications of these standards. These standards include different
applications to provide different services to the customers. Modern communication stan-

1

2

dards support numerous high speed applications. Previously, RF transceivers were de-
signed to support a single dedicated communication standard where the main emphasis
of development was on cost effective solutions [2]. Nevertheless, plentiful services are
presently available for the customers. Therefore, developing a transceiver with a single
standard support is neither feasible nor beneficial. Hence,the development of a single RF
transceiver supporting multiple wireless communication standards is a natural solution e.g.,
a configurable transceiver to support GSM, UMTS and LTE wireless standards. The main
advantages of the multi-standard approach are: (i) small die area, (ii) small PCB area, (iii)
less power consumption, (iv) less interconnections and (v)easier to handle. Re-usability
of components is key goal of multi-standard solutions. Reusing the hardware components
while maintaining a satisfactory performance can significantly reduce the cost (less man-
power, less verification efforts) of a development. A singlemulti-mode transceiver is much
more beneficial than several transceivers with single standard support [1,2].

To support multiple communication standards, an RF transceiver should be reconfig-
urable so that it’s transmitter and receiver chains can be configured to support a particular
standard. Hence, the main emphasis in the development of multi-standard transceivers has
been directed towards improving hardware reusability, reconfigurability, programmability
and flexibility. The capability to support multiple communication standards makes the
transceivers very complex. Therefore, a compound logic is needed to control and configure
them. This control logic resides within the transceiver andconfigures it for a particular
standard. It is also responsible to control and monitor the communication between the
baseband and the transceiver over the interface. This complexity puts more demands on
the power and area apprehensions of the transceivers. Further, this control logic itself has
to be reconfigurable and flexible for being capable to supportthe multi-mode transceivers.

Aside the easier integration, the digital interfaces are indispensable to support the con-
temporary high-speed communication standards. An advancemulti-mode transceiver ne-
cessitates a high-speed digital interface and a multi talented (reconfigurable, programmable,
flexible, intelligent, fast and time accurate) control logic. DICE GmbH & Co KG, Austria
is a daughter company ofInfineon Technologies, Villach, Austria. It mainly focuses in the
designing of innovative, leading-edge Application-Specific Integrated Circuits (ASICs) for
the communications industry, particularly for the wireless products. An active group of the
company is working for the development of high-speed interfaces and control-architectures
for the multimode transceivers. The main objectives of these control architectures are to
provide maximum flexibility, reusability and multi-standards (existing and future) support
with low power and small die area. A flexible controlling logic is one of the main require-
ments on the architectures. Programmable digital hardwareparts are used in the architec-
tures to provide the maximum flexibility.

The project this report discusses isthe implementation and the verification
of a CPU Subsystem. This CPU Subsystem is a robust component of a control archi-
tecture being developed in the company. It operates as a central control unit of this ar-
chitecture. Its foremost function is to configure the RF transceiver and the interface for a
particular communication standard.

Typically costs are important factor in the industry. Therefore, we decided to use open

3

source components to implement this Subsystem. Modern industry is also rapidly shifting
towards the cheap open source solutions. The performance, area and power were also
significant concerns while implementing the Subsystem.

The goal of the project was to implement a low-cost CPU Subsystem with a satisfactory
performance and a comprehensive verification of its correctness.

This report has been structured in chapters for the simplicity and easiness. Brief infor-
mation about the contents of chapters has given below.

Chapter 2 briefly outlines the environment in which the CPU Subsystem employs. Fur-
thermore, this chapter sheds light on the operations of the CPU Subsystem. It outlines
the specifications, constraints and objectives of this project. This chapter also portrays the
methodology followed to accomplish these objectives. Further, it briefly discusses some
basic concepts necessary to understand the implementation. However, the main emphasis
of this chapter is on the development of the CPU Subsystem andits components. Finally,
this chapter discusses the Software GNU Tool chain and the creation of the memory ini-
tialization file needed for the simulation of the Subsystem.

Chapter 3 gives a short introduction about the basic verification concepts. It discuses
the different types of verification and evaluates the possible alternatives to verify the CPU
Subsystem. Furthermore, this chapter also discusses the different technologies used for the
verification of the CPU Subsystem.

Chapter 4 discusses the verification plans and demonstrates the test benches used to
verify the memory system and the Sub-bus system. Further, this chapter describes the
framework and development of the test bench used for the functional verification of the
OpenRISC1200core.

Chapter 5 thoroughly discusses the results obtained from the functional verification
of the memory system, the Sub-bus system, the OpenRISC1200core. It also discusses the
results from the simulation of the CPU Subsystem. This chapter also outlines: (i) the
errors found in the OpenRISC1200core, and (ii) the various discrepancies found between
the Golden Model and the OpenRISC1200core.

Chapter 6 concludes the thesis, highlights the future work and suggests the possible
extensions.

Chapter 2
System Environment and Organization

2.1 Introduction

This chapter focuses on the implementation and the simulation of the CPU Subsystem.
Section2.2 gives an overview about the environment of the CPU Subsystemand its op-
erations in it. This section also outlines the objectives ofthis thesis and a systematic ap-
proach to accomplish them. Section2.3 introduces the Wishbone interconnection standard
which is essential to understand this project. This sectionalso sheds light on the maximum
throughput limitations of the Wishbone standard. Section2.4explains the implementation
of the memory system. Section2.5 describes the development of a triple-layer Sub-bus
system. Section2.6 introduces the OpenRISC1200processor used as a central processing
unit within the CPU Subsystem. This section briefly describes the main components of the
processor and its pipeline architecture. Section2.7explains the maximum throughput limi-
tations of the CPU Subsystem. Section2.8describes the OpenRISC1200software tool chain
and its installation. This section also discusses the generation of memory initialization file
by using this tool chain. Finally, this section summarizes the integration of all components
to implement the CPU Subsystem and the simulation of a test program on it.

2.2 System Description

2.2.1 Overview

As discussed earlier, implementing a digital interface is apractical solution to handle
the high-speed communication between a complex multimode transceiver and a modern
baseband-unit. A flexible and configurable control-architecture is required to control the
multimode transceiver’s chains (TX/RX), and to maneuver the communication between
the transceiver and the baseband-unit. This control-architecture also configures the mul-
timode transceivers to activate a particular standard. TheCPU Subsystem operates in a
control-architecture being developed to incorporate the multimode RF transceivers. This

4

2.2 System Description 5

control-architecture is comprised of specialized adapters, a bus and distribution system, a
multicore debug system and the CPU Subsystem. The actual control architecture is confi-
dential and cannot be discussed in detail. However, some of its functionality related to the
CPU Subsystem has been summarized below.

2.2.2 Advanced Control Architecture for Multimode RF Transceivers

The advanced control architecture administers the communication and configures the
transceiver through macros. These macros are small messages sent by the baseband unit
to the control architecture over the digital interface. Thesemacroscontain the parameters
(e.g., channel number, band to be used) required to control the communication, and to con-
figure the different units of the transceiver and the interface. Detail about the transceiver’s
units is beyond the scope of this report. The CPU Subsystem (Figure [2.1]) is responsible
to decode the control macros to extract the control information and store the settings to
the different units of the transceiver. The Main-bus systemof the architecture is used to
write the configuration macros to the memory (RAM) of the CPU subsystem. The central
processing unit (CPU) fetches the macros from the RAM and decodes them to extract the
control settings. This process is called thehigh-level macro processing. These settings are
stored into the transceiver’s units (RD/RX unit, RX/TX-PLLetc.) through the Main-bus
system of the control architecture. This complete process is called thepre-configuration1

of the transceiver. After the pre-configuration, a time-accurate strobe macro is used to start
thesequencing2 of the transceiver’s units by using the pre-configured settings. Thestrobe
macroshave very tough real-time requirements. Hence, they are decoded in the hardware
and directly sent to the units.

The macro decoding itself does not have very hard real-time requirements. The CPU
Subsystem has a time-period to decode a macro and the decoding must be finished be-
fore that time. However, there are other real-time requirements on the chip e.g., the time
accurate strobe-macros, the power up/start of the RF chain or the filter etc.

M
ai

n
bu

s
(s

in
gl

e
la

ye
r)

Timer

Power
management

Debug

PIC

RAM ROM

CPU

Sub bus (triple layer)

CPU Subsystem

S MM

S S

Figure 2.1CPU subsystem within advanced control architecture.

1The macro’s decoding.
2The configuration of the transceiver by copying the decoded setting to the hardware registers.

2.2 System Description 6

2.2.3 Structural Design of the CPU Subsystem

The CPU Subsystem shown in Figure [2.2] is consisted of a processor, a triple-layer Sub-
bus, several interfaces and the memories. Details about these components will be given
shortly.

Triple-layer Sub-Bus
(Wishbone)

D
at

a_
if

In
st

r_
if

S
cp

u_
if

Mbus_if
(master)

R
A

M
_i

f

D
W

B
IW

B

O
pe

nR
IS

C
12

00

C
or

e

RAM

ROM

R
O

M
_i

f

R
A

M
_w

b
R

O
M

_w
b

Mbus_if
(slave)

Figure 2.2The CPU Subsystem.

This project can be divided into two major parts:

1. The implementation of the CPU Subsystem.

2. The verification of the CPU Subsystem and its components.

The implementation part includes the development of: (i) a Sub-bus system, (ii) a
memory system and (iii) the interfaces between all the components. Since implement-
ing a processor was beyond the scope of this project, a third party processor was needed
which could function as a Central Processing Unit (CPU) in the subsystem. The proces-
sor was also required to have the utilities like power management, an interrupt controller,
a hardware timer and the debugging facility. After surveying the open source market the
OpenRISC1200processor was a suitable choice [3]. The OpenRISC1200(OR1200) is a 32-
bit open source processor. It is ideally suited for the applications requiring higher perfor-
mance than 16-bit processors while having low-cost and low power consumption advantage
compared to 64-bit processors. Additionally, it also supports all the required utilities. The
target applications of the OR1200 processor are: (i) mediumand high performance net-
working, (ii) embedded and automotive systems, (iii) portable and wireless applications,
and (iv) consumer electronics. The OR1200 core complies theWishbone interconnection
specifications to interact with the outer world. Therefore,all peripherals have to follow
the Wishbone standard to interconnect with the OR1200 core.The Wishboneis an open
source interconnection standard widely used in the industry. The development of a low
cost SoC by using open source components is flourishing in thecontemporary industry.
The OR1200 core and the Wishbone interconnection standard have been discussed in sub-
sequent sections.

2.2 System Description 7

2.2.4 Classification of the Project Objectives

The goal of the thesis is to implement a CPU Subsystem and its exhaustive functional
verification. The most important part of any project is to define its scope and objectives in
order to identify the requirements. Since this project has two divisions, the objectives can
also be divided into two groups: (i) the implementation objectives and (ii) the verification
objectives.

Implementation Objectives

The implementation includes the development of the CPU Subsystem using the OR1200
processor. Since the Subsystem has requirements of low power and small die area design,
we decided not to use the caches (data and instruction) and the memory management units
(data and instruction) of the OR1200 core. The implementation of the CPU Subsystem
consisted of the following milestones.

• The implementation of a CPU Subsystem without using the caches and the memory-
management of the OR1200 core with the characteristics of: (i) high-performance,
(ii) low-power and (iii) small area.

• Achieve the single-cycle execution on the OR1200 core.

• The development of a triple-layerSub-bus systemwith: (i) single-cycle access, (ii)
fixed-priority based arbitration and (iii) the interfaces (Master/Slave) with the Wish-
bone standard. The implementation should be area and power efficient.

• The implementation of amemory systemincludes a Random Access Memory (RAM)
and a Read Only Memory (ROM). The implementation of the Wishbone interfaces
for both memories.

• The installation of the OR1200 GNU Toolchain (developmenttoolkit). The gener-
ation of the executable-files and the memory initializationfiles (IHex) for the CPU
Subsystem by using the development toolkit.

• The integration of the CPU Subsystem and its simulation by executing sample pro-
grams on it.

Verification Objectives

The verification of the CPU Subsystem includes the functional verification of: (i) the
OR1200 core, (ii) the Sub-bus system and (iii) the memory system (ROM/RAM). It also
includes the simulation-based verification of the CPU Subsystem. For the functional verifi-
cation of the OR1200 core itsInstruction Set Simulator (ISS)3 was used as a golden model.
The verification of the CPU Subsystem consisted of followingmilestones.

3Or1ksim is a generic OpenRISC1000 architectural simulator.

2.3 Wishbone Interconnection Standard 8

• The development of a Bus functional model for the functional verification of the
memory system.

• The development of a test bench for the functional verification of the Sub-bus system.

• A simulation based verification of the CPU Subsystem.

• An exhaustive functional verification of the OR1200 core.

• The development of a SystemVerilog based wrapper around the OR1200 core in order
to communicate with the core and to access its internal status.

• The development of agolden modelfor the functional verification of the OR1200
core.

– Compile the ISS to a static library and develop the public interfaces to access
it. These public interfaces are used by a system to interact with the ISS library.

– Develop a SystemC wrapper around the ISS library to access its public inter-
faces. Provide theDirect Programming Interface (DPI) within the wrapper.

• The development of a reconfigurable and reusable test benchusing theOpen Verifi-
cation Methodology (OVM).

Out of Scope

The tasks beyond the scope of this project are listed below:

• The verification of the OR1200 core includes only the troubleshooting of faults. It
does not include the alteration in the OR1200 core to rectifythem.

• The development of application programs for the macro decoding is not part of work.

2.3 Wishbone Interconnection Standard

2.3.1 Overview

TheWishbone interconnection is an open standard for the behavior of interfaces that de-
scribes the protocol to exchange data between the IP (intellectual property) cores. The
Wishbone standard does not provide the implementation of the interconnects. The actual
connections between the interfaces is up to the designers. The Wishbone interface proto-
col provides a reliable integration and easier reuse of IPs to develop the large SoCs. All
components of the Subsystem have been implemented using theWishbone interface spec-
ifications. Therefore, a brief introduction of the protocolis essential before moving to the
implementation. More details can be found in the official Wishbone specification [4].

2.3 Wishbone Interconnection Standard 9

2.3.2 Wishbone Interface Specifications

The Wishbone interface specification can be used for a point-to-point connection between
two cores as well as to implement some kind of bus to connect multiple cores. The Wish-
bone specification presents the MASTER and the SLAVE interfaces. The Master interface
is connected to the Master component that originates a bus transaction. The Slave interface
is connected to the component that responds in the bus transaction i.e., the Slave compo-
nent. The Master and Slave interfaces can be connected to each other in different ways
e.g., (i) a point-to-point connection, (ii) a shared bus, (iii) a crossbar bus or (iv) a data flow
interconnection. In the Wishbone standard, a suffix (_I or _O) is attached to each signal’s
name to clearly identify its direction. This identifies whether a signal is an input to a core
or an output from a core. For example, (ADR_I) is an input signal while (ADR_O) is an
output signal.

 RST_I
 CLK_I
ADR_O ()
 DAT_I ()

DAT_O ()
 WE_O
 SEL_O()
 STB_O
 ACK_I
 CYC_O
 TAGN_O
 TAGN_I

W
IS

H
B

O
N

E
 M

A
S

T
E

R

RST_I
CLK_I
ADR_I ()
DAT_I ()

DAT_O ()
WE_I
SEL_I()
STB_I
ACK_O
CYC_I
TAGN_I
TAGN_O

W
IS

H
B

O
N

E
 S

LA
V

E

SYSCON

USER
DEFINED

Figure 2.3Point-to-point connection between the Wishbone Master andSlave.

Figure [2.3] shows a point-to-point connection between a Master and a Slave interface
[5]. All timing diagrams (coming later) refer to this connection. Since the Wishbone signals
use active-high logic (Rule 2.30), all signals in the CPU Subsystem will also obey this
rule [4]. There are some optional signals in the Wishbone interfacespecification put into
service depending on the implementation. These optional signals have not been discussed
in this report. A short description about the Wishbone interface signals is given below.

Syscon Signals

clk_o and rst_o: The SYSCON module generates theclock output(clk_o) and the
reset output(rst_o) signals for the Master and Slave interfaces. The clk_o signal is the sys-
tem clock and the rst_o signal is the system reset for the interconnection implementation.
The clk_o signal is connected to the clock input (clk_i) signal of the Master and Slave in-
terfaces. The rst_o signal compels the Wishbone interfacesto restart and forces the internal

2.3 Wishbone Interconnection Standard 10

state machines of the interconnection implementation to their initial states. The rst_o signal
is connected to the reset input (rst_i) signal of the Master and Slave interfaces.

Signals Common to the Master and Slave Interface

• clk_i: The clock inputsignal is used to coordinate the internal activities of the
Wishbone interconnection. All Wishbone output signals areregistered at the rising
edge of the clk_i signal. All Wishbone input signals must be stable before the rising
edge of the clk_i signal.

• rst_i: When thereset inputsignal is asserted, the Wishbone interfaces are forced
to restart and all internal state machines are switched to their initial states.

• dat_i and dat_o: Thedata inputanddata outputarrays are used to pass bi-
nary data. The minimum granularity of the data size is 8-bit with the maximum size
of 64-bit. The select output (sel_o) signal is used to selecta particular byte of data in
the data arrays. The signal dat_i is used to transfer the datafrom the Slave interface
to the Master interface. The signal dat_o is used to transferdata from the Master
interface to the Slave interface.

Master Interface Signals

• adr_o: Theaddress outputarray is used to pass binary addresses from the Master
interface to the Slave interface. The higher boundary of thearray is specified by the
address width of the core. The lower boundary of the array is restricted by the size
of the data port and the granularity level.

• cyc_o: When a Master interface asserts thecycle outputsignal, it indicates that a
valid bus transfer is in progress. The signal remains asserted as long as a consecutive
bus transfer is valid. For example, in a burst transfer, it isasserted at the first data
transfer and remains high until the last data transfer. In a multi-master development,
this signal is used to request the arbiter for the bus-access(grant). After getting the
grant from the arbiter, a Master interface holds the bus as long as the cyc_o signal is
high.

• stb_o: When thestrobe outputsignal is asserted, it indicates a valid data transfer
cycle. It certifies that the other interface signals are valid. In response to every stb_o
assertion, the Slave interface has to assert either the ack_i, the err_i or the rty_i signal.

• ack_i: The Slave interface asserts theacknowledge inputsignal in response to the
stb_o. Each assertion of the ack_i signal indicates a normaltermination of a bus
transfer cycle.

• err_i: The assertion of theerror input signal indicates an abnormal termination
of a bus transfer cycle.

2.3 Wishbone Interconnection Standard 11

• rty_i: The assertion of theretry inputsignal indicates that the Slave interface is
not ready to send or accept the data. Hence, this cycle shouldbe retried.

• sel_o: The select outputarray points out where valid data bytes are positioned
in the data array. In READ cycles, the sel_o signal indicatesthe position of valid
data bytes in the data input array (dat_i). In WRITE cycle, the sel_o signal indicates
the position of valid data bytes in the data output array (dat_o). The sel_o array
boundaries depend on the size of the data arrays with bytelevel granularity.

Example The select output array of 4-bit is needed to indicate the four bytes within
a 32-bit data array. Each sel_o bit is corresponding to a particular byte in the dat_i
or the dat_o array e.g., the sel_o(0) bit is for the dat_i(7 downto 0) byte, the sel_o(1)
bit is for the dat_i(15 downto 8) byte, and so on.

The Sub-bus system is a 32-bit implementation of the Wishbone standard. There-
fore, we need a 4-bit select array to indicate the four bytes of the data arrays.

• we_o: The write enablesignal shows whether the current bus cycle is WRITE or
READ. The we_o signal is asserted for a WRITE bus cycle and stays low for a READ
bus cycle.

Slave Interface Signals

The Slave interface signals have almost the same description like the Master interface
signals with the opposite direction. Details about the Slave interface signals can be found
in the official Wishbone specification [4].

Wishbone Classic Cycles

The Wishbone classic cycles define the general bus operations, the reset operation, the
protocol and how data is organized during the bus transfer. The Master and Slave interfaces
are connected through a number of signals. These signals arecalled the “Bus” which is used
to exchange data between the Master and the Slave interfaces. The information on the Bus
(address, data, control signals etc.) travels in the form oftransactions.

The Wishbone specification uses ahandshake protocol(Figure [2.4]) for the bus trans-
fers [4]. A Master asserts the strobe signal (stb_o) when ready to transfer. The Slave asserts
the terminating signal (ack_i/err_i/rty_i) in response. The terminating signal is sampled at
every rising edge of the clock input (clk_i) signal. If the terminating signal is asserted, the
strobe signal (stb_o) goes low.

Figure [2.5] shows a Wishbone classical single READ transfer cycle. A Wishbone
classical single WRITE transfer cycle is shown in Figure [2.6]. A Wishbone classical bus
cycle is initiated by asserting the strobe signal (stb_o) and the cycle signal (cyc_o). The
Slave asserts the acknowledge signal (ack_i) for a normal termination. The Slave can insert
any number of wait states (WSS) by keeping the acknowledge signal (ack_i) low. The write

2.3 Wishbone Interconnection Standard 12

CLK_I

STB_O

ACK_I

Figure 2.4Wishbone handshaking protocol.

enable (we_o) signal identifies whether the current transfer cycle is a READ or a WRITE.
Each Wishbone classical bus cycle needs to be properly terminated before starting a new
one.

−WSS−CLK_I

ADR_O

DAT_O

DAT_I

WE_O

SEL_O

STB_O

CYC_O

VALID

VALID

VALID

ACK_I

M
as

te
r

si
g

n
al

s

Figure 2.5Wishbone classical single READ cycle [6].

−WSS−CLK_I

ADR_O

DAT_O

DAT_I

WE_O

SEL_O

STB_O

CYC_O

ACK_I

VALID

VALID

VALID

M
as

te
r

si
g

n
al

s

Figure 2.6Wishbone classical single WRITE cycle [6].

The Wishbone classical bus cycle can be used to get block-style accesses, shown in
Figure [2.7]. The cycle signal (cyc_o) remains asserted for the complete burst cycle. The
strobe signal (stb_o) is used to control the transfer or to insert wait states. During a block
(burst) access, the Master can either start a new transfer byasserting the strobe signal

2.3 Wishbone Interconnection Standard 13

(stb_o) or can insert wait states by keeping it low. This is opposite to the single cycle access
where the Slave can insert wait states. In block-style access, the arbitration has already been
done and a Master has the ownership of the Slave through the interconnection. Thereby,
the Slave is always ready to take a new request.

CLK_I

ACK_I

CYC_O

STB_O

W
S

S

W
S

M

W
S

S

W
S

M

Figure 2.7Wishbone classical block cycles [6].

The new Revision [B.3] of the Wishbone standard also supports incremental block
transfers. However, this is beyond the scope of this report.Details can be found in the
official Wishbone specification [4].

2.3.3 Maximum Throughput Constraints on the Wishbone

The maximum throughput from the Wishbone interconnection can be achieved by using
asynchronous termination signals (ack_i, err_i, rty_i). But, the asynchronous termination
signals result in acombinatorial loop[4] i.e., from the Master to the Slave and then from the
Slave to the Master, through the INTERCON, Figure [2.8]. The INTERCON is a module
that implements the internal logic of the interconnection.

M
A
S
T
E
R

IN
T
E
R
C
O
N
N

S
L
A
V
E

Figure 2.8Wishbone asynchronous cycle termination path [4].

The simplest solution for this problem is to cut the combinatorial loop by usingsyn-
chronous terminationsignals. In this case, the Slave has to de-assert its acknowledge signal
low after each transfer. Because this approach adds a wait state after every transfer, each
transfer can be completed in at least two clock cycles as shown in Figure [2.9]. Conse-
quently, the maximum throughput with synchronous terminating signals is reduced by half
because a new bus transfer can be initiated after every second clock cycle.

Theadvanced synchronous cycle terminationis an optimum solution to overcome the
decreased throughput in which the Slave knows in advance that it is again being addressed.
Hence, the Slave keeps the acknowledge signal (ack_i) asserted rather than de-asserting it
first and assert it again for the next transfer. The advanced synchronous cycle termination

2.3 Wishbone Interconnection Standard 14

CLK_I

STB_I

ACK_O

1 2 3 4 5

ADR_I() N N+1

Figure 2.9Wishbone classic synchronous cycle terminated burst [4].

is a beneficial approach for the large bursts. It needs “burst_length+1” cycles to complete
a transfer if there are no wait states, Figure [2.10].

Example An 8-cycle burst needs nine cycles to complete the transfer while it needed six-
teen clock cycles with the synchronous cycle termination. This is the throughput increase
of 77%.

A single cycle burst is the worst case with the advanced synchronous cycle termination
where its throughput is same as the synchronous cycle termination. It means both ap-
proaches are same for the single cycle bus transfer.

CLK_I

STB_I

ACK_O

1 2 3 4

ADR_I() N N+1

Figure 2.10Wishbone advanced synchronous terminated burst [4].

We used a technique to increase the throughput for the single-cycle access. The idea
behind is to use the asynchronous termination (ack_i, err_i, rty_i) for the WRITE requests
and synchronous termination for the READ transfers. Since we do not need the registered
data output from the Slave, an asynchronous acknowledgment(ack_i) for the WRITE re-
quest can be used. By using this technique, we need one clock cycle for each single cycle
WRITE access instead of two clock cycles. However, the READ request still needs two
clock cycles for each single cycle access.

To achieve the maximum possible throughput with the Wishbone specifications all com-
ponents with Wishbone interfaces should follow the technique of “advanced synchronous
cycle termination” with the asynchronous termination of WRITE requests and synchronous
termination of READ requests. The achieved throughput for the WRITE requests will be a
single cycle access. Every READ request will be finished in “burst_length+1” cycles.

2.4 Memory System of the CPU Subsystem 15

2.4 Memory System of the CPU Subsystem

2.4.1 Overview

The memory system, used in the CPU Subsystem, consists of a “Read Only Memory”
(ROM) and a “Random Access Memory” (RAM). As earlier discussed, the configuration
macros are written into the RAM of the CPU Subsystem using theMain-bus of the control
architecture. The OR1200 core fetches the macros from the RAM, decodes them, and
stores the configuration settings to the different units of the transceiver. Hence, the core
needs to run an application to decode the macros. The application is stored into the ROM
of the CPU Subsystem. The core fetches the instructions fromthe ROM and executes them.
Both memories are 32-bit word aligned.

2.4.2 Random Access Memory (RAM)

As we know, the OR1200 is a 32-bit processor with Wishbone interfaces for the data
and the instruction. Therefore, we needed to implement a 32-bit wide data RAM and a
Wishbone interface to access it. Further, the RAM had to be byte addressable in order to
support the byte-level granularity of the data arrays. The RAM size and the address-lines
are configurable to lessen its power consumption and the area.

RAM
(32-bit)

RAM32
_wbif

wb_err _o
wb_rty_o
wb_dat_o

wb_cyc_i
wb_adr_i
wb_stb_i
wb_we_i
wb_sel_i

wb_dat_i

W
is

hb
on

e
In

te
rc

on
ne

ct
io

n

wb_ack_o

in
it

_v
al

ue
_g

m
em

_s
ize

_g

rst_i
clk_i

aw
_g

Figure 2.1132-bit Random Access Memory (RAM).

Figure [2.11] shows the design of the implemented RAM having 32-bit wide data ar-
rays. It is byte-addressable RAM with a Wishbone interface.The input “mem_size_g”
determines the size of the RAM. The input “aw_g” controls theaddress-width needed to
access that much size. The empty RAM is initialized with the input value “init_val_g“.
As the RAM is a slave component, a Slave Wishbone interface has been implemented to
access it. The Wishbone signals have been described before.

2.4 Memory System of the CPU Subsystem 16

Write and Read Operations

We used synchronous termination (ack_i) for READ requests and asynchronous termina-
tion (ack_i) for WRITE requests to achieve the maximum throughput from the RAM while
breaking the combinatorial loop [2.3.3].

65536

16

A55D93C3 15866ABF 2B...

F F F F F

5576 AAF3 AAF3 557A AAF7

47... 16E65A19 00000000 XXXX... A55D93C3 00000000

2200 ns 2250 ns 2300 ns

u_ram/init_value_g

u_ram/mem_size_g 65536

u_ram/aw_g 16

u_ram/clk_i

u_ram/rst_i

u_ram/wb_data_i A55D93C3 15866ABF 2B...

u_ram/wb_we_i

u_ram/wb_sel_i F F F F F

u_ram/wb_adr_i 5576 AAF3 AAF3 557A AAF7

u_ram/wb_cyc_i

u_ram/wb_stb_i

u_ram/wb_dat_o 47... 16E65A19 00000000 XXXX... A55D93C3 00000000

u_ram/wb_ack_o

u_ram/wb_err_o

u_ram/wb_rty_o

Figure 2.12Sequential single transfer WRITE/READ.

Figure [2.12] shows a single transfer WRITE and READ operations for the RAM.
A Master component initiates the WRITE request at time 2220 ns by asserting (i) the
wb_cyc_i, (ii) the wb_stb_i and (iii) the wb_we_i signals. The wb_sel_i signal identi-
fies the valid data bytes in the data arrays (wb_dat_i/wb_dat_o) depending on the operation
(WRITE/READ). For instance, in this WRITE operation, all four bytes of 32-bit input data
array (wb_dat_i) are valid to be written to the address (wb_adr_i). Since we are using asyn-
chronous acknowledgment for WRITE requests, the wb_ack_i signal has been asserted at
time 2220 ns without any delay. Hence, we get a single cycle bus transfer for the WRITE
operation. Because of the synchronous acknowledgment for the READ requests at time
2260 ns the acknowledgment wb_ack_i is one clock cycle later(at time 2280 ns) than the
request. Hence, the READ operation finishes in two clock cycles.

2.4.3 Read Only Memory (ROM)

The application to decode the configuration macros is storedin the ROM. The core fetches
the instructions one by one from the ROM and executes them. Figure [2.13] shows the
design of 32-bit ROM implemented with the Wishbone interface. The input “mem_size_g”
determines the size of the ROM while the input “aw_g” controls the address width needed
to access that much size.

2.4 Memory System of the CPU Subsystem 17

ROM
(32-bit)

ROM32
_wbif

wb_err _o
wb_rty_o
wb_dat_o

wb_cyc_i
wb_adr_i
wb_stb_i
wb_sel_i

wb_dat_iW
is

hb
on

e
In

te
rc

on
ne

ct
io

n

wb_ack_o

ih
ex

_f
ile

m
em

_s
iz

e_
g

rst_i
clk_i

aw
_g

Figure 2.1332-bit Read Only Memory (ROM).

Read Operation

The READ request for the ROM also gets the synchronous acknowledgment. Each READ
operation takes at least two clock cycles to finish. Hence, the maximum throughput for the
READ operation is similar to the RAM i.e., two clock cycles for every READ access.

Memory Initialization

An application is compiled with the software toolchain to generate a “memory initial-
ization file” for a particular processor. The memory initialization file contains the binary
instructions of the application. The input “ihex_file” shown in Figure [2.13] is a reference
to the memory initialization file going to be loaded into the ROM. The details about the
software toolchain for the OR1200 processor and the generation of memory initialization
file are explained in the Section (2.8.2). Here we give a short overview about loading the
initialization file into the ROM. The loading of the initialization file has been handled inside
the ROM.

After receiving the reset signal the OR1200 core fetches thefirst binary instruction
from a default reset address i.e.,0x00000100. The initialization file must be loaded into the
ROM starting from this address so that the first instruction of the applications is stored at the reset
address of the core. Figure [2.14] shows a snapshot of an initialized ROM after loading the memory
initialization file into it. The first binary instruction (0x1820F000) in the initialization file has been
loaded at the address 0x00000040. The OR1200 core always generates a word aligned address4 for
the instruction fetch. Therefore, we have implemented a world aligned ROM. Hence, if the address
(0x00000040) is two bits shifted left the resulting addresswill be the reset address of the OR1200
core (0x00000100).

4The last two bits of a word aligned address are zero. The last two bits address the four bytes inside a
32-bit word and there is no meaning of partially fetching a binary instruction.

2.5 Triple-layer Sub-bus System 18

�

Figure 2.14The ROM initialization.

2.5 Triple-layer Sub-bus System

2.5.1 Overview

Current VLSI technology has made it possible to incorporatean extensive number of transistors
in a single die area. Therefore, modern systems can accommodate plenty of computational blocks
(CPUs, DSPs, IPs) in a single chip to support the modern computation extensive applications. How-
ever, the interconnection between the increasing number ofcomponents in a SOC is a challenge.
Since the traditional serial buses have scalability and bandwidth limitations, we need to find better
interconnection methods for the systems having large number of components [7].

The advancement in modern SoCs needs hierarchy of buses in the system. Therefore, a multi
layered bus architecture is a better solution to cope the limitations of the traditional buses [8]. Most
of the modern buses are following the hierarchical structure to overcome the scalability limitations
while providing a higher communication throughput. Moreover, modern hierarchical buses par-
tition the communication domains into different groups of communication layers to achieve the
bandwidth’s requirement [7].

In this section, we are going to discuss a multi layered bus (also called Crossbar) implemented
to connect the components of the CPU Subsystem. All interfaces of this bus comply the Wishbone
interconnection standard.

2.5 Triple-layer Sub-bus System 19

2.5.2 Sub-bus Specifications

The CPU Subsystem includes three Master components and fourSlave components. The Mas-
ter components include: (i) the OR1200 instruction interface, (ii) the OR1200 data interface and
(iii) the Main-bus master interface. The Slave components include: (i) the ROM, (ii) the RAM,
(iii) the Main-bus slave interface and (iv) the OR1200 slaveinterface5. The development of a scal-
able and high performance bus architecture to interconnectthese components was essential for the
Subsystem.

The Sub-busis a triple-layer bus architecture developed with three Master interfaces and four
Slave interfaces. The Master components are connected to the Master interfaces. The Slave com-
ponents are connected to the Slave interfaces of the Sub-bussystem. All interfaces employ the
Wishbone interconnection standard. The Sub-bus is a simpleinterconnection architecture which
provides high data bandwidth and can support up to single cycle throughput.

The Sub-bus has been implemented by considering the low power and small area requirements.
The configurable address lines for the Slave interfaces lessen the area and power consumption of
the Sub-bus. Since the Sub-bus is a triple-layer implementation, the Master interfaces can access
the Slave interfaces in parallel as long as there is no contention between the Master interfaces on
a single Slave interface. If there is a contention, a priority based arbitration protocol has been
implemented to serialize the ownership requests. The Sub-bus implements a distributed arbitration
method i.e., each Slave interface has its own arbiter to serialize the contention on itself. Each Master
interface has been assigned a fixed priority that influences the arbitration. A Master interface with
higher priority takes the bus ownership by suspending the current bus transfer. The suspended
Master interface resumes the transfer when the higher priority Master interface leaves the ownership.
The “Sub-bus master interface” connected to the “Main-bus master interface” owns the highest
priority because this interface has to deliver data and get free again and its request should not
be delayed to have a predictable response. The Load/Store instructions access the OR1200 data
interface during the executio. Hence, the Sub-bus master interface connected to the OR1200 data
interface has a higher priority than the Sub-bus master interface connected to the OR1200 instruction
interface. Otherwise, a higher priority instruction interface never allows the data interface to access
the memories, particularly when the OR1200 core fetches newinstruction every cycle.

2.5.3 Sub-bus Architecture

The architecture of the Sub-bus system has been partitionedinto two figures for a clear illustration
and to easily understand. Figure [2.15] shows the Sub-bus architecture and its internal connections
from its Master interfaces to the Slave interfaces. Figure [2.16] shows the internal connections of
the Sub-bus from the Slave interfaces to the Master interfaces.

According to the specifications, the Sub-bus contains threeMaster interfaces to connect three
Master components and four Slave interfaces to connect the four Slaves components of the CPU
Subsystem. All units of the Sub-bus are individually described below.

Configuration of the Sub-bus System

The configuration generics are used to configure the different units of the Sub-bus. The address-
width selection generics are used to configure the address widths of the Masters interfaces and

5The original OR1200 implementation does not include this interface.

2.5 Triple-layer Sub-bus System 20

sh
ar

ed
_b

/w
_s

la
ve

s
sh

ar
ed

_b
/w

_s
la

ve
s

Configurati on
Generics

Triple-layer Sub-bus
(priority based arbitration)

Configurati on Generics

insn_stb

insn_scpu_adr [aw_scpu]

insn_scpu_ss

data_scpu_ss

mbus_scpu_adr [aw_scpu]

mbus_scpu_ss
mbus_sbus_ss

data_we

data_cyc
data_stb

mbus_stb

mbus_rom_adr [aw_rom]

mbus_rom_ss

mbus_ram_adr [aw_rom]

mbus_ram_ss

mbus_sbus_adr [aw_rom]

mbus_sbus_ss

mbus_scpu_adr [aw_rom]

mbus_scpu_ss

Masters to Slaves
In terconnects

Main-Bus
Master Interface

Priori ty [0]
Wishbone

Signals

Address Decoder

Int ernal
Signals

Configurati on
Generi cs

OR1200 Data
Master Interface

Priorit y [1]
Wishbone

Signals

Address Decoder

Int ernal
Signals

Configurati on
Generics

OR1200
Instruction

Master Interface
Priori ty [2]

Wishbone
Signals

Address Decoder

Int ernal
Signals

OR1200
Slave Interface

Internal
Signals

Prior ity
Ar biter

Wishbone
Signals

Configuration
Generics

Main-bus
Slave Interface

Internal
Signals

Priorit y
Ar biter

Wishbone
Signals

Configurati on
Generics

RAM
Slave Interface

Internal
Signals

Priorit y
Ar biter

Wishbone
Signals

Configurati on
Generics

ROM
Slave Interface

Int ernal
Signals

Priori ty
Arbi ter

Wishbone
Signals

Configurati on
Generi cs

sh
ar

ed
_b

/w
_s

la
ve

s

mbus_sbus_adr [aw_sbus]
mbus_ram_adr [aw_ram]
mbus_rom_adr [aw_rom]

mbus_cyc
mbus_sel
mbus_we

mbus_data [32]

mbus_ram_ss
mbus_rom_ss

data_sbus_ss
data_ram_ss
data_rom_ss

data_scpu_adr [aw_scpu]
data_sbus_adr [aw_sbus]
data_ram_adr [aw_ram]
data_rom_adr [aw_rom]

data_sel

insn_sbus_ss
insn_ram_ss
insn_rom_ss

insn_sbus_adr [aw_sbus]
insn_ram_adr [aw_ram]
insn_rom_adr [aw_rom]

insn_cyc
insn_sel
insn_we

insn_data [32]

data_scpu_ss
insn_scpu_ss

data_scpu_adr [aw_rom]
insn_scpu_adr [aw_rom]

data_sbus_ss
insn_sbus_ss

data_sbus_adr [aw_rom]
insn_sbus_adr [aw_rom]

data_ram_ss
insn_ram_ss

data_ram_adr [aw_rom]
insn_ram_adr [aw_rom]

data_rom_ss
insn_rom_ss

data_rom_adr [aw_rom]
insn_rom_adr [aw_rom]

data_data [32]

aw
_w

b
aw

_r
om

aw
_r

am
aw

_s
bu

s
aw

_s
cp

u
en

c_
bi

ts
_r

om
en

c_
bi

ts
_r

am
en

c_
bi

ts
_s

bu
s

en
c_

bi
ts

_s
cp

u
ro

m
_i

d
ra

m
_i

d

sc
pu

_i
d

sb
us

_i
d

Figure 2.15Sub-bus architecture (Master to Slave interfaces interconnects).

2.5 Triple-layer Sub-bus System 21

Triple-layer Sub-bus
(priority based arbitration)

Slaves to Masters
Interconnection

OR1200
Slave Interface

Int ernal
Signals

Priorit y
Ar biter

Wishbone
Signals

Configuration Generi cs

Configurati on
Generics

rom_err

aw
_w

b
aw

_r
om

aw
_r

am
aw

_s
bu

s
aw

_s
cp

u
en

c_
bi

ts
_r

om
en

c_
bi

ts
_r

am
en

c_
bi

ts
_s

bu
s

en
c_

bi
ts

_s
cp

u
ro

m
_i

d
ra

m
_i

d

sc
pu

_i
d

rom_data_bg
rom_mbus_bg

ram_err

ram_data_bg
ram_mbus_bg

sbus_err

sbus_data_bg
sbus_mbus_bg

scpu_err

scpu_insn_bg
scpu_data_bg
scpu_mbus_bg

rom_insn_bg
ram_insn_bg
sbus_insn_bg
scpu_insn_bg

rom_mbus_bg
ram_mbus_bg
sbus_mbus_bg
scpu_mbus_bg

rom_data_bg
ram_data_bg
sbus_data_bg
scpu_data_bg Main-bus

Slave Interface
Int ernal
Signals

Prior ity
Ar biter

Wishbone
Signals

Configuration
Generi cs

RAM
Slave Interface

Int ernal
Signals

Prior ity
Ar biter

Wishbone
Signals

Configuration
Generi cs

ROM
Slave Interface

Internal
Signals

Priorit y
Ar biter

Wishbone
Signals

Configuration
Generi cs

Main-Bus
Master Interface

Priorit y [0]
Wishbone

Signals

Address Decoder

Int ernal
Signals

Configurati on
Generics

OR1200 Data
Master Interface

Pri ori ty [1]
Wishbone

Signals

Address Decoder

Internal
Signals

Configuration
Generics

OR1200
Instruct ion

Master Inte rf ace
Priorit y [2]

Wishbone
Signals

Address Decoder

Int ernal
Signals

Configurati on
Generics

sh
ar

ed
_b

/w
_m

as
te

rs
sh

ar
ed

_b
/w

_m
as

te
rs

sh
ar

ed
_b

/w
_m

as
te

rs
sh

ar
ed

_b
/w

_m
as

te
rs

scpu_rty
scpu_ack

scpu_data [32]

sbus_insn_bg

sbus_rty
sbus_ack

sbus_data [32]

ram_rt y
ram_ack

ram_data [32]

rom_insn_bg

rom_rt y
rom_ack

rom_data [32]

ram_insn_bg

sb
us

_i
d

Figure 2.16Sub-bus architecture (Slave to Master interfaces interconnects).

2.5 Triple-layer Sub-bus System 22

the Slave interfaces. An optimal width selection for the Slave interfaces significantly reduces the
number of address lines inside the Sub-bus architecture which considerably cuts down the area and
power consumption of the Sub-bus. Theaddress decodersuse the encoding-bits selection gener-
ics and the slave-identities to select a particular Slave interface. More details will be given while
describing the address decoder.

Sub-bus Master Interface

Each Master interface includes (i) the configuration generics, (ii) the Wishbone signals, (iii) the
internal signals and (iv) the address decoder. Each unit is individually described below.

Configuration Generics
These generics are used to configure each Sub-bus Master interface. These are used to adjust

the width of the Wishbone address6 and the widths of the internal address lines for each Sub-bus
Slave interface.

Example The genericaw_wbadjusts the width of the address lines coming to the Master interface
from the outer world. The genericaw_romadjusts the width of the internal address lines of the
Sub-bus going from the Master interface to the Slave Interface connected to the ROM.

Wishbone Signals
The Wishbone signals of a Master interface are used to connect a Master component to the

Sub-bus. A component connected to the Sub-bus must have a Wishbone interface. If the external
component is a Master, it must have a Master Wishbone interface to be connected to the Master
interface of the Sub-bus. If the external component is a Slave, it must have a Slave Wishbone
interface to be connected to the Slave interface of the Sub-bus.

Internal Signals
The internal signals are used for the point-to-point interconnection between the Master inter-

faces and the Slave interfaces of the Sub-bus. Some internalsignals of a Master interface are shared
among all the Slave interfaces while other are dedicated fora particular Slave interface.

Address Decoder

An address decodershown in Figure [2.17] is a core component of a Sub-bus Master interface. It
is used to decode the incoming address from the Master component. The incoming address includes
a specific range of bits to identify the destination Slave interface for a particular request. The
configuration generics distinguish the encoding bits in theaddress and the identity of a requested
Slave interface. The decoder includes a comparator for eachSub-bus Slave interface to chop out
the encoding bits and compare the value with the Slave interface’s identity. The decoder selects
a Slave interface if the encoding bits (in the address) hold its identity. For example, if the input
address (ms_adr_i) holds the identity (rom_id) in its decoding bits (enc_bits_rom) the Sub-bus
Slave interface connected to the ROM will be selected (rom_ss_o). The encoding-bits are always
most significant bits (MSBs) of the address.

6The address coming from the Master component connected to this Master interface

2.5 Triple-layer Sub-bus System 23

���
���

&
����	����
�� ��	��

�
�
�
�
�
��
��

�

�

��
�
�
�
��
��

�
�
�

��
�
�
�
��
��

��
	
�

��
�
�
�
��
��

��
�
	

��
�

�
��

��
�
	
�
��

�

�

�
��

��
	
��

��

��������
�
�����

�������

��	�����

���	����

&
������
�

&
������
�

&
������
�

&
������
�

Figure 2.17Address decoder.

Figure [2.18] shows a waveform of the decoder. The input address is 32-bitwide (aw_g) in
which upper 16-bit (enc_bits_slave_g) hold the identitiesof the Sub-bus Slave interface. The de-
coder receives an address, compares the 16 MSBs with the Slave identities and asserts the slave-
select signal corresponding to the Slave interface having that identity.

32

16

16

16

16

A

B

C

D

000A478A 00... 000C5489 00... 000B21DB 00... 000D53CD

3947300 ns 3947400 ns 3947500 ns

u_decoder/aw_g 32

u_decoder/enc_bits_rom_g 16

u_decoder/enc_bits_ram_g 16

u_decoder/enc_bits_sbus_g 16

u_decoder/enc_bits_scpu_g 16

u_decoder/rom_id_g A

u_decoder/ram_id_g B

u_decoder/sbus_id_g C

u_decoder/scpu_id_g D

u_decoder/rom_ss_o

u_decoder/ram_ss_o

u_decoder/sbus_ss_o

u_decoder/scpu_ss_o

u_decoder/ms_adr_i 000A478A 00... 000C5489 00... 000B21DB 00... 000D53CD

Figure 2.18Address decoder waveform.

2.5 Triple-layer Sub-bus System 24

Sub-bus Slave Interface

EachSub-bus Slave interfaceincludes (i) a configuration generic, (ii) the Wishbone signals, (iii)
internal signals, and (iv) an arbiter. Each unit has been individually described below.

Configuration Generic
This value is used to configure each Sub-bus Salve interface to adjust the width of the address

going to the connected Slave component. It also adjusts the widths of internal address-lines coming
from the Sub-bus Master interfaces.

Wishbone Signals
The Wishbone signals are used to connect a Slave component having a Slave Wishbone inter-

face.

Internal Signals
The internal signals are used for the point-to-point interconnection between the Sub-bus Slave

interfaces and the Sub-bus Master interface. Some of the internal signals are shared among all
Master interfaces while others are dedicated for a particular Master interface.

Arbiter

There is no centralized entity to control the accesses to theSub-bus Slave interfaces. Each Slave
interface itself grants the access requests and implementsa fixed priority arbitration protocol (pre-
emptive)7 to handle the contention on its ownership. Each Slave interface contains an arbiter inside
(Figure [2.19]) which implements the arbitration protocol and grants theaccesses. A Master inter-
face requests the ownership of a Slave interface by asserting its slave select signal (ms_ss_i) for that
Slave interface and also the cycle input signal (ms_cyc_i) to indicate the valid bus transfer.

�������"��

���������

���������

��	������

��������

��������

��	�����

�����"�

������%���

������%���

��	���%���

1��������
���%�

0�������

Figure 2.19Fixed priority arbiter.

Figure [2.20] illustrates the implemented arbitration protocol. A Master interface requests the
ownership of a Slave interface by asserting its cycle input (ms_cyc_i) signal and the Slave selec-

7Low priority Master cannot block the request of a high priority Master.

2.5 Triple-layer Sub-bus System 25

tion signal (sl_ss_i) for the requested Slave interface. The Slave interface gives the grant if idle8.
Otherwise, the requesting Master interface has to compete with the Master interface having the
ownership of the Slave interface. A Master interface havingthe higher priority wins the ownership
in the contention. The suspended Master interface waits until the Slave interface is free.

4005300 ns 4005400 ns 4005500 ns

u_arbiter/clk_i

u_arbiter/reset_i

u_arbiter/instr_bg_o

u_arbiter/data_bg_o

u_arbiter/mbus_bg_o

u_arbiter/instr_ss_i

u_arbiter/data_ss_i

u_arbiter/mbus_ss_i

u_arbiter/sl_ack_i

u_arbiter/instr_cyc_i

u_arbiter/data_cyc_i

u_arbiter/mbus_cyc_i

Figure 2.20Fixed priority based arbitration.

2.5.4 Fundamental Characteristics of Sub-bus

The internal interconnections of the Sub-bus have been divided into shared and dedicated signals,
shown in Figure [2.15]. The shared signals of a Master interface are visible amongst all the Slave
interfaces while the dedicated signals correspond to a particular Slave interface. When a Master
component requests for a bus transaction, the Sub-bus Master interface sets the shared signals and
sends the request over the dedicated signals to the requested Sub-bus Slave interface. That Slave
interface arbitrates the access request and gives the grant. The shared signals only qualify for the
Slave interface which grants the request while other Slave interfaces simply ignore them. The
qualified signals are propagated to the Slave component overthe Wishbone signals. The connected
Slave component sees the request (READ/WRITE) and respondsto it accordingly. Despite that the
shared signals of a Slave interface are visible amongst all the Master interfaces (Figure [2.16]), only
a granted Master interface qualifies these shared signals and sends them to the request initiator.

The triple-layer Sub-bus is very easy to use and simple to handle. Its re-configurability provides
the flexibility to employ it according to the system’s requirements and to maneuver its area and
power utilization. The Sub-bus supports up to single cycle throughput with zero arbitration time
when the bus is idle, otherwise one clock cycle at maximum. The Sub-bus also supports block
transfer of any size with its maximum throughput.

Even though, the Sub-bus implementation can support singlecycle throughput, since it will be
connected to the components having Wishbone interfaces, its maximum throughput will be con-
strained by the Wishbone standard’s limitations on the maximum throughput (see Section2.3.3).

8Free, no grant to any Master-interface.

2.6 The OpenRISC1200 Processor 26

2.6 The OpenRISC1200 Processor

2.6.1 General Description

The OR1200 processor (Figure [2.21]) implements the central processing unit of the CPU Subsys-
tem. The OR1200 is a 32-bit scalar RISC soft-processor with Harvard memory architecture. It has a
single-issue 5-stage integer pipeline, virtual memory support and a MAC unit for basic DSP opera-
tions. The OR1200 delivers a sustained throughput and supports single-cycle execution for most of
its instructions. Its intended target applications include: (i) embedded applications, (ii) Internet and
networking applications, (iii) telecoms and wireless applications, and (iv) automotive applications.
The OR1200 is a 32-bit implementation of the OpenRISC1000 architecture. The OpenRISC1000
is a latest architecture designed for 32-bit and 64-bit RISC/DSP processors. The emphasis of the
architecture is on (i) simplicity, (ii) low power, (iii) high scalability and (iv) high performance of the
processors. The OR1200 supports big-endian byte ordering.The OR1200 is an open source proces-
sor under the LGPL license. It is developed and being managedby the OpenCores organization. Its
verilog model is freely available atOpenCores.

Power
Management

Debug

CPU/DSP

PIC

Tick
timer

IMMU

ICache
8 KB

DMMU

DCache
8 KB

WB
I

WB
D

PM
I/F

DB
I/F

INT
I/F

Figure 2.21The OpenRISC1200 processor.

2.6.2 Performance

The OR1200 supports the system frequency of 250 MHz under worst-case scenario at 0.18µm
6 LM fabrication process. It can execute 250 dhrystone millions of instructions per second (DMIPS)
at 250 MHz, the worst-case. It can execute 250 MMAC operations at 250 MHz under worst-case
conditions. However, under normal conditions, the OR1200 should provide over 300 dhrystone 2.1
MIPS at 300 MHz and 300 DSP MAC 32x32 operations. This performance is at least 20% more
than any other competitor in this class [9].

The power estimation of the OR1200 is less than 1 Watt at full-throttle while less than 500 mW
at half-throttle with 250 MHz clock at a 0.18µmprocess. Its die-area without cache memories is
less than 0.5Sqmmat 0.18µm6 LM fabrication process. A default configuration of the OR1200
has about 1M transistors [9,10].

http://www.opencores.org/

2.6 The OpenRISC1200 Processor 27

2.6.3 The OpenRISC1200 Architecture

Figure [2.22] shows the architecture of the OR1200 core including the central processing unit
(CPU/DSP), caches (IC/DC), memory management units (IMMU/DMMU) and other utility com-
ponents. Many components are optional to implement. A component is implemented and controlled
through its corresponding special purpose registers and unit dependent registers. Some important
units of the processor will be discussed below. More detailscan be found in the official documents
of the OR1200 core and in its RTL implementation [9–12].

Data
Wishbone
BIU

Instruction
Wishbone
BIU

Instruction
cache

Store
buffer

Data
cache

Embedded
memory
QMEM

IMMU

DIMMU

CPU

Programmable
interrupt
controler

Tick
timer

Debug
unit

Power
management
unit

S
B

 to
 B

IU
D

C
 to

 S
B

IC
 to

 B
IU

QEM and IC

QEM and DC

IMMU and QMEM

DMMU and QMEM

IMMU and CPU

DMMU and CPU

CPU and data memory subsystem

CPU and instruction memory subsystem

Connection to CPU and external debug port

clk_i

rst_i

clmode_i[1:0]

pic_insts_i[ppic_insts_i-1:0]

pm_cpustall_i

Data
Wishbone
interface

Instruction
Wishbone
interface

External
debug
interface

Connection to CPU and PIC

Connection to CPU and tick timer

Connection to CPU and power management

External
interrupt
interface

External
PMU
interface

Figure 2.22The OpenRISC1200 architecture.

Caches and Memory Management

As the OR1200 implements a Harvard memory architecture, it has a Level-1 separate data cache
(DC) and a Level-1 instruction cache (IC). It also has a separate data memory management unit
(DMMU) and an instruction memory management unit (IMMU). Both caches (IC/DC) are N-way
set associative and physically tagged. The DC is scalable from 1 Kbytes to 8 Kbytes. The IC is
scalable from 512 Bytes to 8 Kbytes. A default implementation of the processor has direct-mapped
8 Kbytes caches (IC/DC) with 16 Bytes line size (8-byte line size is also supported). The DC
operates in write-through mode (only supported). The OR1200 supports an implementation without
having caches. However, it affects the throughput of the processor.

The memory management units (IMMU/DMMU) enable the virtualmemory support and con-
sist of hash-based translation-lookaside buffers (TLBs).Both translation-lookaside buffers (instruc-
tion/data) are direct-mapped with page size of 8 Kbytes. Both TLBs (ITLB/DTLB) are individually
scalable from 16 to 128 entries per each way. Both MMUs have a linear address-space with a 32 bits
virtual address and a physical address from 24 to 32 bits. A default implementation of the OR1200

2.6 The OpenRISC1200 Processor 28

core have direct-mapped translation-lookaside buffers (DTLBs/ITLBs) of 64 entries per each way
with a fixed page size of 8 Kbytes.

Debug Unit

The OR1200 optionally provides a debug unit to support basicdebugging features. The debug
unit does not support watch-points, breakpoints and program flow control registers. However, the
OR1200 provides a development interface to connect a more advance additional debugging facility.

Tick Timer

The OR1200 core provides a high-resolution hardware timer.The timer is clocked with the RISC
clock. It is used by operating systems for task scheduling and precise time measurement. The
maximum range of the timer is 232 clock-cycles. The maximum time period between the interrupts
is 228 clock-cycles. The timer provides a mask-able interrupt andoffers different run-modes: (i)
single run, (ii) continuous run or (iii) restart-able.

Programmable Interrupt Handler (PIC)

The OR1200 has an interrupt-controller that receives external interrupts through its interrupt in-
terface and sends them to the Central Processing Unit (CPU).The interrupt controller supports two
non-maskable interrupts and 30 maskable interrupts, with two priority levels.

Power Management Unit (PMU)

The OR1200 core has a sophisticated power management unit tocontrol its power consuming
functions. The power management unit offers different power down modes: (i)sleep mode, (ii)
doze mode, (iii) slow and idle mode, and (iv)CPU stalling. The clock frequency of the processor is
software-controlled in the slow-and-idle mode. The power consumption can be reduced from 2x to
10x in this mode. In the doze mode, a software running on the core is suspended and the clocks to
all RISC internal units are disabled except to the real-timeclock and internal timer. Other on-chip
blocks can work normally in the doze mode. The power consumption in this mode can be reduced
up to 100x. The processor leaves this mode and enters the normal mode when a pending interrupt
from an external peripheral occurs. In sleep mode, the real-time clock and periodic timer are the
only RISC internal modules that are activated. The OR1200 leaves the sleep mode and enters the
normal mode when a pending interrupt from these modules occurs. The power consumption can
be reduces up to 200x. The power management unit does not support dynamic clock gating. A
more advanced power management utility can be connected to the OR1200 core using the power
management interface. The implementation of a power management unit in the core is optional and
depends on the designer’s requirements.

Quick Embedded Memory (QMEM)

The QMEM implements some time critical functions to achievea fast and predictable behavior
of (i) the soft floating-point unit, (ii) the context switching, (iii) the exception handlers and (iv) the
stacks. Since both caches (IC/DC) share the QMEM, the instruction fetch operations affects the

2.6 The OpenRISC1200 Processor 29

performance of the Load/Store operations. The effective throughput of the instruction fetch opera-
tion is one instruction per clock cycle. Whereas, data accesses have different effective throughputs
for READ and WRITE depending upon the instruction fetch accesses. In absence of an instruction
fetch, READ data takes two clock cycles per access while WRITE data takes one clock cycle per
access. The QMEM is an optional unit. Its implementation increases the OR1200 size and makes
it slower. The QMEM sits behind the memory management units (IMMU/DMMU) so all addresses
are physical. Since the IC and the DC are sitting behind the QMEM, the whole design timing might
be worse with the QMEM implemented [12].

Store Buffer (SB)

The Store Buffer (SB) is optionally implemented to improve the performance by buffering the
CPU’s store accesses. The SB is very important for the function prologues because the DC can only
work in write-through mode and all stores would have to complete the external write-back writes
to the memory. The SB is implemented between the DC and the data Wishbone interface of the
OR1200 core. All store accesses are stored into the SB and immediately completed by the CPU.
However, the actual external writes are performed later. Hence, the SB masks all data-bus errors
related to Stores, but data-bus errors related to Loads are delivered normally. Since the OR1200
core implements a strict-memory model9, all pending CPU loads will wait until the store buffer
is empty [11]. The SB makes the OR1200 implementation bigger, dependingupon the number of
entries in the SB’s FIFO [12].

System Interface

The system interface is used to connect the system signals tothe OR1200. The interface is com-
prised of (i) the system clock, (ii) the system reset and (iii) other system level signals.

Wishbone Interfaces

The OR1200 core is connected to external peripherals and external memories through two inter-
faces, the data interface (DWB) and the instruction interface (IWB). Both interfaces support only 32
bits bus width and comply with the Wishbone specification Revision [B]. The instruction Wishbone
interface (IWB) is used to fetch instructions from the instruction memory (IM). The data Wishbone
interface (DWB) is used for the data transfer between data memory (DM) and the processor.

2.6.4 Central Processing Unit (CPU/DSP)

The verification of the OR1200 core was the most important objective of the thesis. Therefore,
we must have a detailed information about the internal architecture of the core. In addition to
the OR1200’s specification, the central processing unit (CPU) is the most important component
to understand in detail. The CPU implements the instruction’s execution pipeline architecture of
the core. We must have a comprehensive knowledge about (i) the architecture of the CPU, (ii) its
pipeline execution, (iii) its timing, (iv) register set and(v) the organization of inside units plus their
co-ordination during operation. More details about the CPUarchitecture can be found in the official
documents of the OR1200 processor and in its RTL implementation [3,9–12].

9All Load/Store operations are performed in order.

2.6 The OpenRISC1200 Processor 30

CPU Architecture

The OR1200 CPU/DSP is shown in Figure [2.23]. It implements the 32-bit part of the Open-
RISC1000 architecture. A brief introduction about the units of the CPU is presented below. Details
about its pipeline architecture will be given in the subsequent section.

Instruction
 unit

Exceptions
GPRs

System

Integer EX
pipeline

MAC unit

Load/Store
unit

CPU/DSP

Data MMU
& cache

Insn MMU
& cache

System

Figure 2.23Central Processing Unit (CPU/DSP).

Instruction Unit

The instruction unitimplements the basic instruction pipeline of the OR1200 core. The instruc-
tion unit fetches instructions from the memory system and dispatches them to the available exe-
cution units (LSU, ALU, MAC unit) while ensuring a precise exception model. The instruction
unit also executes the branches and jump instructions. It implements the “OpenRISC Basic Instruc-
tion Set” (ORBIS32) of the OpenRISC1000 architecture. The OpenRISC1000 architecture defines
five instruction’s formats and two addressing modes: (i) register indirect with displacement and
(ii) PC relative. The ORBIS32 instruction set class has 32-bit wide instructions aligned on 32-bit
boundaries in the memory and operates on 32-bit and 64-bit data. The instruction set also supports
eight custom instructions implemented on demand. An additional co-processor can be attached to
the core. All branch/jump instructions are followed by a delay slot while Return-from-Exception
(RFE) does not have a delay slot. Most of the OR1200 instructions execute in a single cycle. The
instruction multiply takes three clock cycles and the instruction divide takes 32 clock cycles to
execute. Both instructions are implemented in the MAC unit.The MAC unit will be discussed later.

Register Set

The OR1200 core implements thirty two 32 bits general purpose registers (GPRs). The GPRs have
been implemented as a dual port synchronous memory with 32 words of 32 bits each. The OR1200
contains 32 groups of special purpose registers (SPRs). It also implements unit-dependent registers.
Some important SPRs for the verification of the OR1200 are briefly discussed below.

Supervision Register
The supervision register (SR) is a special purpose registerwhich shows the state of the OR1200

processor.

2.6 The OpenRISC1200 Processor 31

Exception Supervision Registers
There are sixteen exception supervision registers (ESR0-ESR15). It is up to the designer how

many ESRs he needs in the implementation. The SR is copied into the ESR register when there is
exception. If an implementation has only a single ESR, the exception handler routine has to save it
before re-enabling the exception recognition in the SR.

Program Counter Register
The program counter (PC) register stores the address of the next instruction to be executed.

Exception Program Counter Register
The exception program counter (EPCR) is a special purpose register which stores the copy of

the PC register when there is an exception. It stores the address of the instruction interrupted by the
exception.

Exception Effective Address Registers
There are sixteen exception effective address registers (EEAR0-EEAR15). It is up to the

designer how many EEARs he wants in the implementation. Whenthere is exception, the EEAR
saves the effective address (EA) generated by the faulting instruction. If an implementation has only
one EEAR, the exception handler routine has to save it beforere-enabling the exception recognition
in the SR.

Load Store Unit (LSU)

The Load/Store unit (LSU) is responsible for transferring data between the GPRs and the internal
data Bus of the CPU. The LSU has been implemented as an independent unit in the OR1200 core
so that stalls in the memory system only affect master pipeline if there is a data dependency. All
Load/Store requests are aligned on 32 bit boundaries. The LSU can execute one load instruction
every two clock cycles (assuming a hit in the DC). The execution of store instructions takes one
clock cycle (assuming a hit in the DC).

Arithmetic and Logic Unit (ALU)

The ALU is a pipeline unit that implements: (i) the arithmetic instructions, (ii) the compare
instructions, (iii) the logical instructions and (iv) the rotate and shift instructions. Most of the ALU
instructions execute in a single cycle.

Multiply Accumulate Unit (MAC)

A fully pipelined multiply-accumulate (MAC) unit executesbasic DSP operations and MAC in-
structions. The MAC unit has the ability to accept new MAC operations every clock cycle. It
optionally implements multiply and divide instructions. The multiplier in the MAC unit is 32x32
bits. However, the multiply instructions only use the lower32-bit of the result. The MAC instruction
has 32-bit operands and a 48-bit accumulator.

2.6 The OpenRISC1200 Processor 32

System Unit

It connects all the CPU signals to the system signals except those which are connected through the
Wishbone interfaces (IWB/DWB). The system unit also implements the system SPRs e.g., SR.

Exception Unit

The exception unit handles the generated exception in the OR1200 core. These exceptions include:
(i) the system calls, (ii) the internal exceptions, (iii) the memory access conditions (e.g., unaligned
access/invalid address), (iv) interrupt requests and (v) the internal errors (e.g., unimplemented in-
structions). Each exception has a defined offset address. The control is transferred to this address if
there is an exception.

Example The control is transfered to the address 0x00000600 for an unaligned memory access
exception and to the address 0x00000700 for an illegal instruction exception.

2.6.5 OpenRISC1200 Instruction Pipeline

The pipeline architecture is the most important part to understand while verifying a pipelined pro-
cessor. Pipelining is a technique to divide the instruction’s execution into a number of independent
steps to improve the throughput of a processor. These independent steps are called pipeline stages.
Each pipeline stage ends up in a storage (pipeline registers) of its execution so that the subsequent
stages can use the result. The OR1200 core implements a 5-stage integer pipeline. The pipeline
stages are shown in Figure [2.24].

Instruction
cache

IF ID EX LS WB

PC

Except
unit

Figure 2.24The OpenRISC1200 pipeline stages [13].

The GenPC is not an independent pipeline-stage in the OR1200core. It works in parallel to
the Instruction Fetch (IF) i.e., the first pipeline stage. The GenPC generates the next program
counter (PC) and sends it to the IMMU (if implemented) to calculate the physical address. If there
is no IMMU and IC in the implementation, the PC address is bypassed and directly goes to the
instruction memory (IM) via the IWB. The IF stage fetches newinstruction from the IC. If no IC is
implemented, it fetches the instructions directly from theIM. In the Instruction Decode (ID) stage,
the new instruction is decoded to identify (i) the basic typeof the instruction, (ii) the instruction’s
Opcode, (iii) the addresses of the operands to be fetched from the register file, (iv) calculate the im-
mediate if the instruction is with immediate, (v) the address of the data to be loaded/stored, and (vi)
the execution unit (LSU/ALU/MAC) for the instruction. The next pipeline stage is the Execution
stage (EX). After providing the required input data, an instruction is dispatched to its execution unit

2.6 The OpenRISC1200 Processor 33

to execute. Since the LSU is implemented as an independent unit to not affect the master pipeline of
the OR1200, all instructions (except load/store) bypass the Load/Store (LS) pipeline stage. In this
stage, the LSU transfers data between the GPRs and the DC (if existed, otherwise, the data memory
(DM)). In the Write Back (WB) pipeline stage, the result of aninstruction’s execution is written
back to the register file (RF).

The OR1200 core implements an exception-model parallel to the pipeline-model to handle ex-
ceptions in a controlled way. Each pipeline stage (except IF) can generate an exception. The
exception-unit implements the exception-model. It inputsthe exception signals from different
pipeline stages and generates the corresponding exception-vectors to calculate the new program
counter (PC). If an instruction in the pipeline results in anexception the next PC will be the
exception-vector corresponding to that exception (see Subsection2.6.4).

We will thoroughly discuss the pipeline execution in next few sections.

Register Level Outlook

Figure [2.25] shows the register level view of the OR1200 pipeline architecture. The register level
understanding is very important and a concrete starting point to verify a digital design. Here we
are going to discuss 5 important registers of the pipeline architecture. However, many registers are
involved in the control-logic and the data-path.

Gen PC

IC

ID Reg file

Operand
muxes

LSU MAC ALU

DC

Writeback
muxes

PC

IF

ID

LS

EX

op, F, addr, disp

op, disp

addr

F

WB

Figure 2.25Registers abstraction of the OR1200 pipeline [14].

The GenPC calculates the next program counter (PC) and sendsthe address to the IC/IM. A
new instruction from IC/IM is fetched and stored into theif_insn register. Since the fields in the
OR1200 instructions are fixed, the instruction in theif_insn is translated to get the addresses of the
source GPRs. The addresses are fed into the register file (RF)10 to get the source operands (GPRs).
The instruction in theif_insn moves to theid_insn register and a new instruction is fetched into
theif_insn register.

The fields of the instruction in the ID stage are translated tothe control-signals for the next
pipeline stages (EX and WB). These control-signals select the input data for the execution units

10Register File implements the thirty-two GPRs of 32 bits each.

2.6 The OpenRISC1200 Processor 34

from the Operand Muxes. These control-signals also select the execution-unit to execute a particular
instruction. Each execution-unit has a different execution time depending on the instruction being
executed. The LS stage comes on the way for Load/Store instructions. The address of the destination
operand is also parsed out from the instruction in theid_insn register. This address is registered
to be used in the Write Back (WB) stage. When all this done, theid_insn instruction shifts to the
ex_insn register.

The results from the execution-units are fed into the Writeback Muxes. The Writeback Muxes
store the calculated result to the Register File (to the destination GPR) and also send it to the
Operand Muxes so that the ID stage can use it to handle data dependencies. Finally, the execution
of the instruction ends and it moves from theex_insn register to thewb_insn register. Currently,
there is no use of this register− may be it is for future use.

Behavioral Outlook

Figure [2.26] shows the behavioral model of the OR1200 pipeline. It is clear that the calculation
of the next PC (GenPC) and fetching a new instruction (IF stage) are in parallel. The calculation of
the next PC follows a procedure. The GenPC block monitors if the exception-model has generated
an exception. If YES, the next calculated PC would be the exception-vector corresponding to the
generated exception. If NO exception was generated, the GenPC checks for the SPR control-block’s
implications on the next PC. The SPR control-block generates the address of the next instruction
under some specific conditions e.g., thel.mtspr11 instruction writes the PC. Furthermore, if there
are no implications from the SPR-block, the GenPC block checks if the instruction in the ID stage
is a branch/jump. If YES, the next PC will be the offset address generated by this instruction.
Finally, if there was no branch/jump instruction in ID stage, the PC will be simply incremented to
the address of the next instruction in the sequence. The updated PC goes to the IC if existed in an
implementation. Otherwise, it directly goes to instruction memory (IM). The GenPC stage ends up
here.

The instruction at the PC address (in IC/IM) is fetched and stored into a pipeline register
(if_insn). If no instruction was fetched (error in fetching a new instruction/RFE instruction/branch
taken), a default instruction is fed into theif_insn register. The instruction in theif_insn register
is translated to (i) get the addresses of the source operands, (ii) to see if the instruction is with an
immediate, and (iii) to identify a branch/jump instruction(to handle the branches/jumps earlier).

The addresses of the source operands are sent to the registerfile. The register file takes one clock
cycle to make the GPRs ready at the inputs of the Operand Muxes(separate muxes for operand-1
and operand-2). Simultaneously, the instruction in theif_insn register is moved to theid_insn
register i.e., to the ID stage. Thus, the register file has been read simultaneous to the ID stage.

When the instruction comes to the ID stage (id_insn), its fields are translated to the control-
signals for the subsequent pipeline stages (EX/WB). Some important steps of the ID stage are:

1. Get the control-signals for the Operand Muxes to select the source operands for the instruc-
tion being decoded. These control-signals select the output of the Operand Muxes from: (i)
the input GPRs (from the RF), (ii) the result from the instruction that just finished its execu-
tion and entered into the WB stage (data dependency), or (iii) the result from the instruction
which has finished the WB stage (data dependencies).

11OR1200 instruction to write the SPRs.

2.6 The OpenRISC1200 Processor 35

MuxMux

Mux

N+4ex_pc

ex_pc rB

MuxMux

MuxMux

id_pc id_insn

NOP

Instruction
memory

NOP

PC

Register
 file

MuxMux MuxMux

 Data
memory

MuxMux Mux

NOP

ALU LSU

NOP

wb_fw

rA rBex_pc ex_insn

wb_pc F

EX

ID

IF

if_insnif_pc

if_insnif_pc

N Offset

LS

wb_fw

wb_insn
WB

Offset

immediate

MAC

Figure 2.26Behavioral view of the OpenRISC1200 pipeline [14].

2.6 The OpenRISC1200 Processor 36

2. Get the control-signals to select the required execution-unit (ALU/MAC/LSU). This selection
is based on the instruction’s opcode. The opcode is also parsed out and sent to the execution-
units. Each execution-unit takes the opcode and executes the instruction if it is valid for it.
However, the result only qualifies from a selected execution-unit depending upon the control-
signals.

3. Get the control-signals to manage the pipeline’s timing.The execution-units have different
execution time depending on the instruction being executed. All ALU instructions (except
those with immediate) finish the execution in one clock cycle. The LSU take two clock cycles
for READ (assuming a hit in the DC) and one clock cycle for the WRITE (assuming a hit in
the DC). The MAC unit can accept new instruction every cycle (except multiply and divide).
Hence, some logic is needed to cope with these variable execution times. The instruction
in the ID stage is translated to know its execution time. Thisinformation is sent to a block
called Freeze logic which implements the logic to stall the different pipeline stages for the
synchronization.

Example Suppose the instruction in ID stage was a Load, the Freeze logic will know that
this instruction will take two clock cycles during execution and it will stall the pipeline stages
behind the EX stage for two clock cycles.

4. If the instruction isl.mtpsr/l.mfspr, calculate the address of the SPR that is going to be writ-
ten/read in the EX stage.

5. If the instruction is with immediate, a 16-bit immediate (id_insn (15: 0)) is chopped out
and sign/zero-extended to 32 bits.

6. Get the control-signal (used in step 5) to see whether the immediate should be sign-extended
or zero-extended.

7. Parse out the destination address (in the register file). This address is registered for laterly
used in the WB stage.

8. Identify if the instruction is illegal or not implemented.

9. The control-signals (from step 1) select the required source operands from the Operand
Muxes. These operands are stored in two registers (rA/rB) and become ready to be used
by the execution-units.

When all this done, the instruction in theid_insn register is shifted to theex_insn register and
the EX stage starts.

All execution-units are fed with the input registers (rA/rB) and the opcode of the instruction and
they execute the instruction12. For multi-cycle instructions, the Freeze logic stalls theprevious and
last stages for the execution time. If the instruction is Load/Store, the EX stage also includes the
LS stage. Eventually, the results from all execution-unitscome to the inputs of the Writeback Mux.
This result is also fed back to the Operand Muxes to handle thedata dependencies. The control-
signal selects the correct result (from the selected execution-unit) which goes to the output register

12If an instruction does not belong to an execution-unit, the opcode is no-operation (NOP)

2.7 Maximum Throughput Restrictions on Subsystem 37

of the Writeback Mux and is finally stored into the register file at the destination address (step 8 in
ID stage). The written result is also fed back to the Operand Muxes to handle the data dependencies.

The exception-model of the OR1200 functions in parallel to the instruction execution. The
exception-block especially looks if the instruction in theEX Stage generates an exception, then
calculates the exception-vector and sends it to the GenPC for next PC address calculation. When
an exception occurs, the exception-block saves the currentcontext of the CPU by copying (i) the
SR to ESR, (ii) ID_PC/EX_PC/WB_PC (depending on the pipeline stage of the instruction which
caused the exception) to EPCR and EEAR, and (iii) also sends the control-signal to the SPR-block
to update the SR.

2.7 Maximum Throughput Restrictions on Subsystem

A default implementation of the OR1200 core can support single cycle execution for most of
its instructions. However, an implementation without caches (IC/DC) has some restrictions on its
maximum possible throughput. The OR1200’s Wishbone interfaces (IWB/DWB) have registered
outputs. It always takes at minimum one clock cycle to initiate a new request (instruction/data) after
receiving the acknowledgment of the previous one. Hence, each request takes at least two clock
cycles to complete. In order to reduce the area and power consumption of the CPU Subsystem the
used implementation of the OR1200 core does not include the caches and memory management
units. The OR1200 core cannot support single cycle execution without caches since burst accesses
are not possible. Therefore, the maximum throughput of the OR1200 core will be two clock cycles
per instruction instead of a single cycle. However, this throughput is only possible if the core
can fetch a new instruction without further delays from the memory subsystem or from the bus.
The triple-layer Sub-bus does not need any extra cycle. However, the memory subsystem cannot
support single cycle access for the READ requests because ofthe synchronous termination (see
Section2.3.3). Hence, each instruction fetch takes at least three clock cycles in the CPU Subsystem.
Consequently, the minimum execution time of a single cycle instruction will be three clock cycles.
Thus, the maximum throughput of the OR1200 core in the CPU Subsystem will be three clock
cycles for most of its instructions.

2.8 Simulation Framework

2.8.1 Overview

We have discussed all components of the CPU Subsystem. In this section, we will discuss how
to interconnect them to build-up the CPU Subsystem. First wewill discuss the generation of the
“memory initialization file” needed to simulate the Subsystem. There are several formats of memory
initialization files. We have opted the “Intel Hexadecimal File format” (IHex) to provide the memory
initialization data to the CPU Subsystem. A specific tools-chain is used to generate a memory
initialization file for a specific processor. Similarly, a GNU toolchain is used to generate the memory
initialization file for the OR1200. In this section, we will discuss: (i) the installation of the OR1200
GNU toolchain, (ii) the generation of the OR1200 memory initialization file (IHex), and (iii) the
building up of the Subsystem and its simulation.

2.8 Simulation Framework 38

2.8.2 OpenRISC1200 GNU Toolchain

Some open source software has been ported to the OR1200 platform e.g., Linux andµClinux. For
easier software development a GNU toolchain has been also successfully ported to the OR1200
architecture. The tools include:

- GNU binutils-2.18.50,
- GNU GCC-4.2.2,
- GNU GDB-6.8,
- µClinux-0.9.29,
- Linux-2.6.24,
- BusyBox-1.7.5 and
- Or1ksim-0.3.0.

More details about the OR1200 GNU toolchain can be found in [15–18].

GNU Toolchain’s Installation on Linux (Ubuntu 8.10)

The OR1200 toolchain was developed and being maintained by the OpenCores organization.
Manually downloading and installing the complete toolchain is tricky. Thanks to OpenCores for
developing a script which downloads and installs the latestversions of all tools.

The script (MOF_ORSOC_TCHN_v5c_or32-elf.sh) can be downloaded from theOpenCores. The
toolchain can be installed on a Windows platform using Cygwin, a Unix-like shell environment.
More details can be found on theOpenCores website.

I was working onUbuntu 8.10 distribution and it required some standard development tools
to be installed before compiling the OR1200 toolchain. It depends on the Linux distribution which
tools are pre-installed and which should be installed. I used theapt-get package management
tool to perform this installation. The given set ofapt-get commands ensures that the required
packages, to build the OR1200 toolchain, have been installed. After downloading the script, we
need to perform the given steps to build the OR1200 toolchain. By default, this script installs the
toolchain under the current directory but it can be changed.I installed the toolchain under the/opt
directory. The toolchain requires at least two GB of free space on the local disk to built.

sudo apt−g e t upda te
sudo apt−g e t −y i n s t a l l bu i l d−e s s e n t i a l
sudo apt−g e t −y i n s t a l l make
sudo apt−g e t −y i n s t a l l gcc
sudo apt−g e t −y i n s t a l l g++
sudo apt−g e t −y i n s t a l l f l e x
sudo apt−g e t −y i n s t a l l b i son
sudo apt−g e t −y i n s t a l l pa tch
sudo apt−g e t −y i n s t a l l t e x i n f o
sudo apt−g e t −y i n s t a l l l i b n c u r s e s−dev

/* ========= Bu i ld t h e OR1200 GNU T oo lcha in ===========* /
sudo mv " down_load_d i r " / MOF_ORSOC_TCHN_v5c_or32−e l f . sh / op t
cd / op t
sudo sh MOF_ORSOC_TCHN_v5c_or32−e l f . sh

/* ==== Fol low t h e prompt , when asked by i n s t a l l e r ====* /
1 s t t ime −> Y
2nd t ime −> N

/* ========== Set t h e Env i ronment v a r i a b l e s ===========* /

http://www.opencores.org/
http://www.opencores.org/

2.8 Simulation Framework 39

g e d i t ~ / . bash rc
−> Add

expor t PATH="$PATH : / op t / or32−e l f / b in "

The GNU toolchain has been installed. It is ready to compile and to simulate applications
developed for the OR1200 architecture.

Memory Initialization File

While developing applications for microcontrollers or microprocessors, we need to convey the
binary information to program them. The memory initialization files are used to provide the binary
information of an application to a specific processor architecture e.g., the OR1200.

TheIntel Hex file (IHex) is a common format for the memory initialization files. It is an
ASCII file with lines of text. Each line follows the Intel Hex format and contains one Hex record.
These records are hexadecimal numbers representing machine-language code or/and constant data.
Intel HEX files are mostly used to transfer the program and data to the ROM/EPROM.

There are three types of Intel HEX files distinguished by their byte orders: (i) 8 bit, (ii) 16 bit
and (iii) 32 bit. Figure [2.27] shows a 32 bit Intel HEX file of a sample program executed on the
Subsystem.

:100100001820F000A82104501860F000A863000037
:1001100018800000A88403DC18A00000A8A5041C17
:10012000E0A52002BC0500001000000A1500000038
:1001300084C40000D40330009C6300049C84000449
:0C03D00084410004440048009C2100749B
:1003DC000000000100000002000000030000000407
:1003EC0000000005000000060000000700000008E7
:0400000300000100F8
:00000001FF

Figure 2.27Intel HEX memory initialization file (IHex).

Each line of the file follows the Intel HEX format and comprises of 6 parts:

1. Start code: Every line starts with a single character ASCII code (:).

2. Byte count: The first two hex digits, after the start code, show the numberof bytes (hex-
digit pairs) in the data field e.g. byte count 0x10 or 0x20 identifies 16 or 32 bytes of data
respectively.

3. Address: The four hex digits, after the byte count, identify the 16 bitbig-endian address
of the beginning of data in the memory.

4. Record type: The two hex digits, after the address, define the type of the data field.
There are six types of data fields identified by the record type(00 to 05). The record type
00 identifies that its a data record containing data and a 16-bitaddress. The record type01
identifies an end-of-file record and record type03 identifies a start segment address record.

5. Data: A sequence ofn bytes (2n hex-digits) of data, where the byte count specifiesn.

2.8 Simulation Framework 40

6. Checksum: The last two hex-digits are the two’s compliment sum of the values in all fields
except the start code (:) and the checksum itself.

Figure [2.28] shows the encoding of different lines in the Intel HEX file (Figure [2.27]). The
first line contains four data sequences, each of 32 bits. These data sequences can hold either 32-bit
instructions or data values.

�<�<�<<�<<�@;<7<<<��@;�<AB<��@C<7<<<��@C=<<<<�=D

����������	�	�
���
�����	������	�
�

<A�<<<<�<=�<<<<<�<<�7@

����������	��������
�����	������	�
�

<<�<<<<�<��77

����������	�
����
�����	������	�
�

Figure 2.28Encoding of the Intel HEX format.

Generation of the IHex File for the OpenRISC1200 core

A test program in C/C++ is compiled with the OR1200 GNU toolchain to generate the Intel HEX
file for the OR1200 architecture. However, compiling a C program with the GNU toolchain requires
a few necessary things to do first.

Linker Script
A linker script is needed which sets up the memory-map of the application by specifying: (i)

the address mapping of the memories, (ii) the place of text and data in the memories, the sizes of
these sections, and (iii) the positions and sizes of the stack and heap in the memories. A linker script
for the CPU Subsystem has been given in Appendix (A.1.3).

Startup Script
Since all initialized data sections go to the RAM, we have to write additional code to initialize

these sections. It is better to write a startup script to include explicit initialization code in the ap-
plication program. Usually, the startup script includes (i) additional code for the stack initialization
and (ii) code for copying the initialized data and static variables from the ROM to the RAM. The
startup script used to generate the memory initialization file for the OR1200 core, within the CPU
Subsystem, has been given in Appendix (A.1.4).

Makefile
It is easier and preferred to write a makefile to compile everything together. While compiling

C program, we specify the linker script and the startup script to get the executables. In addition to
the executables, we can also specify other kind of object files to be generated e.g., (Intel HEX file,
.LST file13). A sample makefile for the CPU Subsystem has been given in Appendix (A.1.5).

13.lst file gives information about the memory mapping for different sections. It also contains the disas-
sembly of the .TEXT section (i.e., C code) of the linker script

2.8 Simulation Framework 41

After generating the executable of a C application the OR1200 architectural simulator(Or1ksim)
can be used to execute the program. It is good to know the results of the execution before simulating
the program on a real system. To execute the application on the simulator we need to provide the
executable file of the application and the configuration file.

Configuration File
A configuration file is needed to configure the OR1200 architectural simulator(Or1ksim). The

configuration file provides the OR1200’s settings e.g., implemented peripherals (memories, UART
etc.) and the settings of these peripherals (if implemented). This file also includes the configuration
settings for the ISS itself. If no configuration file is provided, the ISS uses a default configuration
file namedsim.cfg. More details about the configuration file can be found in the official manuals
of theOr1ksim simulator [17,18].

2.8.3 Simulation Setup for the CPU Subsystem

This section will explain the method to interconnect all components to implement the CPU Sub-
system. It will also shed light on converting IHex files to binary data so that it can be loaded into
the ROM of the CPU Subsystem. Finally, it will describe the simulation of the CPU Subsystem.

Incorporation of the Subsystem

Interconnecting all components to implement the Subsystem(Figure [2.2]) is straight forward
but demands a good care. A correct configuration of the Sub-bus system is a critical part while
connecting all components together. The address widths of the Sub-bus Slave interfaces should be
equivalent to the connected Slave component’s address width. Care must be taken while selecting
the identities and the encoding bits for the Sub-bus Slave interfaces to prevent conflicts. These IDs
and encoding-bits must comply to the memory-map specified inthe linker script (AppendixA.1.3).
For clear understanding, a snapshot of the memory-map has been shown in Figure [2.29]. It shows
the base address and size of the ROM and the RAM. The section .TEXT shows the place of the
application code in the memory.

PROVIDE (__stack = ADDR(.bss) + SIZEOF(.bss) + STACKSIZE + OFFSET);
PROVIDE (__copy_start = _copy_start);
PROVIDE (__copy_end = _copy_end);
PROVIDE (__copy_adr = _copy_adr);

MEMORY
{

rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x0000FFFF
ram (rwx) : ORIGIN = 0xF0000000, LENGTH = 0x000F0000

}

SECTIONS
{

.text 0x100 :
{

_stext = .;
*(.text)
_etext = .;

} > rom

Figure 2.29Linker script’s snapshot.

A correct configuration of the Sub-bus has been shown in Figure [2.30]. In which eight MSBs
have been taken as encoding-bits to identify the Sub-bus Slave interfaces. It is important that the

2.8 Simulation Framework 42

identities for the ROM and the RAM are valid for their addressspaces. From the linker script, the
complete address space of the RAM always contains 0xF0 (240)in its upper eight bits. All addresses
holding 0xF0 in their upper eight bits will be forwarded to the RAM. There must not be any other
peripheral (connected to the Sub-bus) having the same ID in its encoding-bits (no overlapping or
conflict).

e n t i t y c r o s s b a r i s
gener i c (

−−Gener i cs
aw_wb_g : n a t u r a l := 32 ;
aw_rom_g : n a t u r a l := 32 ;
aw_ram_g : n a t u r a l := 32 ;
aw_sbus_g : n a t u r a l := 32 ;
aw_scpu_g : n a t u r a l := 32 ;
enc_b i t s_ rom _g : n a t u r a l := 8 ;
enc_b i t s_ ram _g : n a t u r a l := 8 ;
e n c _ b i t s _ s b u s _ g : n a t u r a l := 8 ;
e n c _ b i t s _ s c p u _ g : n a t u r a l := 8 ;
rom_id_g : n a t u r a l := 0 ;
ram_id_g : n a t u r a l := 240;
sbus_ id_g : n a t u r a l := 255;
scpu_ id_g : n a t u r a l := 15

) ;
por t (
−− c l o c k and r e s e t
c l k _ i : in s t d _ u l o g i c ;
r e s e t _ i : in s t d _ u l o g i c ;

Figure 2.30Sub-bus configuration’s snapshot.

After configuring the Sub-bus system it is simple to connect all components togather, as given
in Figure [2.2].

Simulation of the Subsystem

In order to simulate the CPU Subsystem, we need to load the Intel HEX file of a test program
(C/C++) into the ROM starting from the reset address of the OR1200 core (see Section2.4.3). We
need to parse the Intel Hex file to take out the data sequences (instruction/data) and load them into
the ROM.

Parsing the Intel HEX file has been implemented inside the ROM. We just need to provide the
name of the file to the ROM. The ROM will parse this file and load the binary data sequences starting
from the reset address of the OR1200 core, Figure [2.27]. It is clear to see that the data sequences
in the first line of the sample IHex file has been loaded into theROM at 0x00000040 address.

Finally, we need a simple test bench to instantiate the CPU Subsystem and to drive the system
clock and the system reset signals to it. The system clock forthe CPU Subsystem is 100 MHz.
When the test bench asserts the system reset the OR1200 core sends the READ request (from
address 0x00000100) to its instruction Wishbone-interface (IWB). Since the instruction Master in-
terface (of the Sub-bus) has been connected to IWB, the decoder will translate the requested address
(0x00000100). The address qualifies for the Sub-bus Slave interface connected to the ROM. The
READ request for address 0x00000100 would be forwarded to the ROM. Thus, the OR1200 core

2.8 Simulation Framework 43

will fetch the first instruction and execute it, and so on. However in the Subsystem, fetching a new
instruction will always take at least three clock cycles (see Section2.7).

In order to access the RAM, the processor will generate a request with an address that qualifies
for the Sub-bus Slave interface connected to the RAM. The configuration of Sub-bus is according
to the memory-map of the connected Slave components (ROM/RAM). Therefore, an address that
qualifies for a Sub-bus Slave interfaces also lies inside theaddress-space of the connected Slave
component.

Chapter 3
Verification Fundamentals

3.1 Introduction

This chapter focuses on different verification approaches,methodologies and technologies avail-
able in the market. It also provides a brief introduction about OVM, SystemC library and Sys-
temVerilog direct programming interface (DPI).

3.2 Functional Verification

3.2.1 General Description

The main source of functional errors in a design may be associated to the following:

• ambiguities in product intent

• functional specification ambiguities

• specification are clear but designer misunderstood it

• design implementation errors

The basic objective offunctional verificationis to verify that the initial design implementation is
equivalent to the product intent. The functional verification facilitates to identify if any differences
exist between (i) the product intent, (ii) the functional specification and (iii) the design implemen-
tation. The complexity of functional verification of a design is an NP-hard problem.

3.2.2 Verification Approaches

The main objective of functional verification is to make surethat a design works properly when
stimulated on its boundary. Any error in the design is ignored that cannot be stimulated and observed
on its boundary. These errors include (i) errors that cannotbe activated, (ii) errors that can be
activated but never observed and (iii) multiple errors thatcan potentially hide one another.

44

3.2 Functional Verification 45

Different approaches are used to increase the efficiency andcompleteness of verification, as
described below:

Black-Box Verification

In this approach, a design under verification (DUV) is treated as a black box (closed box) and
its implementation have no considerations. The DUV is accessed only through available interfaces
and its internal state cannot be accessed. This verificationapproach lacks controllability and ob-
servability which makes it difficult to (i) set up a certain functional state of the design, (ii) isolate a
particular functionality and (iii) correlate the output response to an input stimulus. The test bench
can be developed in parallel to the design implementation. However, it is not possible to verify a
large design as a complete unit due to the discrepancy of the functionality against the controllability
and observability.

Gray-Box Verification

In this approach, the DUV is treated as a closed box though itsinternal structure is known. The
input stimulus is applied through external interfaces and its target is to activate the implementation
specific features of the DUV e.g., an internal FSM goes through a particular state sequence. This
approach is used to increase the verification coverage. A design can be modified to increase the
controllability or observability. It is calleddesign-for-verification[19]. An example of such mod-
ifications is the addition of easily controllable registersto set up a particular internal state of the
design.

White-Box Verification

This verification approach offers full controllability andobservability of a design such as setting
up a particular state or bypassing some internal units. Suchverification depends on a particular
implementation hence the test bench can be developed once a design is implemented.

Combined Black and White Box Approaches

• Black/Grey Stimulus and White Observation

This approach is a combination of black- and white-box verification approaches. A DUV is
simulated using black- or grey-box stimulus and assertions(temporal) are used on the DUV
signals (internal and output) for observation (white-box)[19].

• Lots of Black-Boxes in a Large White-Box

This verification approach is used for complex designs. The components of such designs
are first verified (black-box). Hence, there is no need to re-verify them once interconnected.
The white-box verification approach is used to verify the cooperation of already verified
components [19].

3.3 Verification Technologies 46

3.2.3 Verification Challenges

Functional verification may look like a very simple task at first place but it is very difficult to
address. The increasing complexity of designs and shortening time-to-market put more demands on
verification engineers to verify complex designs in shortertime. The following challenges must be
addressed to achieve the verification closure [20].

• Verification completeness

– Maximizing the part of the design that is verified.

– Capturing all scenarios that must be verified.

– Maximizing the use of coverage driven verification methodologies.

• Verification reusability

– Increasing the reusability of a verification environment infrastructure.

– Use of standardized interfaces or functions.

– Identification of common functionality in the verification environment that can be
reused.

• Verification efficiency

– Minimizing the manual effort to complete a verification project.

– Use of automated systems.

• Verification productivity

– Maximizing the work produced manually by verification engineers in a given amount
of time.

– Moving to higher levels of abstraction and leveraging reuseconcepts.

• Verification code performance

– Maximizing the efficiency of verification programs.

– Increasing the knowledge of tools and languages used to implement the verification
environment.

3.3 Verification Technologies

3.3.1 Overview

Typically, there are three kinds of technologies availableto perform functional verification of
designs, as given below:

• Simulation-based verification,

• Formal verification and

3.3 Verification Technologies 47

• Acceleration/Emulation-based verification.

The emulation-based verification is beyond the scope of thisreport. The following subsections
provide an overview of other two technologies.

3.3.2 Simulation-based Verification

All possible behaviors of a system are required to be considered while verifying that the design
implementation is correct corresponding to its specification. We can be sure that no design error
has escaped if the complete functionality of a design has been covered in the verification. The
process in which we examine the behavior of an implementation and increase the confidence in its
specification is usually calledvalidation.

A simulation is a usual method to discover design errors in the validation. In thesimulation-
based verificationnext state values of a design are evaluated in terms of its current state and input
values. Whereas, the future value assignments are scheduled to design signals by considering signal
delays [20]. In this type of verification a verification environment is consisted of a test bench and
a design implementation. The test bench is used to apply input values to the DUV. The next state
values of the DUV are computed based on these input values. Finally, it is checked whether the
computed state is the expected state of the design. All possible input combinations are required to
be covered in simulation-based verification to have a full confidence in the design. Therefore, this
approach is impractical for designs of a moderate size. As increasing number of inputs exponentially
increase input sequences that must be verified. Consequently, we have to reduce the number of input
stimuli and as a result design errors possibly remain undetected [21].

3.3.3 Formal Verification

Formal verification is a practical solution to handle limitations of simulation-based verification.
In formal verification, the behavior of a design is mathematically proven i.e., an implementation
behaves according to its specification for all time instances and for all input variations. Formal
verification proves or disproves a given property of a hardware implementation by using logical and
mathematical equations and methods [20]. In formal verification, we prove mathematical equations
that describe the system. Hence, any property proved by the formal verification holds for all possible
input vectors applied to that implementation. The major advantage of formal verification techniques
is the ability to make universal statements about a propertyof a design implementation. These
statements hold for all possible input streams without requiring test vectors to be applied. There are
two major categories of formal verification techniques, as given below:

• Equivalence checking and

• Property checking.

These approaches are discussed in the following subsections.

Equivalence Checking

Two formal representations of a design implementation (before and after a given transformation)
are provided as input to an equivalence-checking tool. Thistool creates a canonical representation

3.3 Verification Technologies 48

of each implementation. Since the canonical representation is unique for every Boolean function
under an assumed set of conditions (e.g., variable ordering), proving the equivalence of these two
representations is typically straightforward. The most common input representations of a design to
equivalence-checking tools are RTL and netlist of gates. The development of such a tool for designs
of larger sizes is a difficult task. Moreover, creating a canonical representation for very large system
is not practical. Therefore, we need to develop some specialtricks or even manual intervention may
be required to reduce the size of a design to formally verify it. It means that equivalence checking
cannot make a large contribution to main challenges of the functional verification.

Property Checking

Property checking is another formal verification approach that is a very powerful technique to
address functional verification challenges. Given a formaldescription of a design implementation
(e.g., an RTL description) property checking verifies that agiven property described in temporal
logic holds for the given implementation [20]. A design property that is to be verified can be
formulated as an equation of the design’s behavior. The design properties are specified as a set of
assertions.

The following advantages of property checking make it more powerful and a suitable technique
for the functional verification.

• The properties can be described at any level of the product specification and the design cre-
ation. They can be collected incrementally as specificationand development proceeds.

• Property checking can be performed in the beginning stagesof the design even when a veri-
fication environment is not yet available to provide a test stimuli.

• The properties can be used with emulation-based verification and simulation-based verifica-
tion.

• Property checking provides the coverage collection that is needed to check the verification
completeness.

• Property checking is a static technique in which no test bench or logic simulator is required.

There are multiple languages to facilitate property checking, including (i) Property Specification
Language (PSL) and (ii) SystemVerilog (properties are defined in the form of assertions).

Limitations of Formal Verification

It is an often-repeated myth that formal verification guarantees the perfectness of systems. Though
in reality it can significantly increase the confidence in a design. However, an absolute flawlessness
of systems cannot be guaranteed. Since the verification onlyallows the detection of design faults
and does not identify fabrication faults or faults while a system is in use. The verification checks the
correctness of statements according to the formal specification of a design which can be incomplete
or faulty itself. Moreover, the verification tools may contain faults in their programs. Hence, the
formal verification should be taken as an adjunct to but not asa substitute for standard quality
assurance methods [21].

3.4 Verification Methodologies 49

3.3.4 Formal Verification vs Simulation-based Verification

The following example illustrates the difference between formal verification and simulation-based
verification. We have to show that the Equation (3.1) holds by proving that both of its sides give the
same result for all possible input values.

(x+1)2 = x2 +2x+1 (3.1)

In a simulation-based verification, this equation is checked using concrete input values for the
variablex, as shown in Table (3.1). Although Equation (3.1) holds for all input values of variable
x in Table (3.1), the simulation is still not capable of establishing the validity of the equation. In a
formal verification, this equation is proven by applying mathematical transformation rules, as shown
in Table (3.2) [21].

x (x+1)2 x2 +2x+1
0 1 1
1 4 4
2 9 9
3 16 16
9 100 100

67 4624 4624
.

Table 3.1Simulation values of Equation (3.1).

1. (x+1)2 = (x+1)(x+1) definition of square
2. (x+1)(x+1) = (x+1)x+(x+1)1 distributivity
3. (x+1)2 = (x+1)x+(x+1)1 substitution of 2. in 1.
4. (x+1)1 = x+1 neutral element 1
5. (x+1)x = xx+1x distributivity
6. (x+1)2 = xx+1x+x+1 substitution of 4. and 5. in 3.
7. 1x = x neutral element 1
8. (x+1)2 = xx+x+x+1 substitution of 7. in 6.
9. xx= x2 definition of square
10. x+x = 2x definition of 2x
11. (x+1)2 = x2 +2x+1 substitution of 9. and 10. in 8.

Table 3.2Formal proof of Equation (3.1).

3.4 Verification Methodologies

Different technologies and multiple facilities are used during verification activities. To produce
an expected outcome for any given project, different methodologies are used to bring together these
tools and facilities. Most commonly used types of these methodologies are: (i) assertion-based ver-
ification and (ii) coverage-driven verification (CDV). The assertion-based verification focuses on
how assertions can be involved throughout the design flow andacross multiple tools. The coverage-
driven verification is concerned with the best approach for designing and implementing the veri-
fication project. Both approaches overlap each other because an assertion can be considered as a
coverage point for the coverage analysis [20].

The following subsections briefly describe these two methodologies.

3.5 Verification Cycle 50

Assertion-based Verification

In this verification methodology, assertions are used as an integral part of the functional verifica-
tion flow. Main components of this methodology are: (i) identifying main properties to be asserted,
(ii) deciding when those properties must be asserted and (iii) verification tools used to confirm as-
serted properties. The main categories of properties that must be verified are: (i) operating environ-
ment assumptions, (ii) verification related assumptions, (iii) design specifications, and (iv) design
and implementation decisions. It is not necessary that all properties must be satisfied at all time
during a device operation e.g., any device property may failduring the reset sequence. Therefore,
such properties may not be asserted during the reset sequence.

Coverage-driven Verification

It is a simulation-based verification approach particularly developed to focus on the productivity
and efficiency related challenges faced in any functional verification project (see Section3.2.3).
The coverage-driven approach improves the verification completeness and correctness. The basic
idea behind this approach is the random generation of the stimulus, which is the main source of
the productivity gained in this methodology. The coverage collection is a necessary part when the
stimulus generation is randomized. As in the absence of coverage no information is available about
scenarios covered. Some examples of CDV approaches are listed below.

• Transaction-driven verification:It allows scenarios to be specified at a higher level of ab-
straction.

• Constrained random stimulus generation:It leads to productivity gains in generating the
scenarios.

• Automatic result checking:It provides confidence that the design works for all randomly
generated scenarios.

• Coverage collection:It is a mandatory approach as in the absence of coverage it is not obvi-
ous which scenarios have been randomly generated.

• A directed-test-based verification:It is also a necessary approach because not all scenarios
can be generated efficiently by only using random generationtechniques.

3.5 Verification Cycle

A basic intention of any verification project is to achieve the complete verification of all design
features in a minimum possible time and within applicable resource limitations. Since these re-
quirements are very important, a verification plan must hit abalance among them. It is even trickier
as parameters may change throughout the design flow. For example, (i) the project deadline may be
reduced, (ii) project features may be redefined or changed or(iii) the availability of resources may
be changed. An interactive process is followed to find a feasible solution that reaches this balance.
Figure [3.1] shows the steps involved in creating and executing a verification plan. The basic steps
shown in figure are:

1. Building a verification plan,

3.6 Verification Environment 51

2. Building a verification environment,

3. Executing the verification environment,

4. Measuring results and

5. Reacting to measurements.

In each iteration of this cycle, the verification completionis checked until it reaches the expected
goals.

React

Build Plan
Refine Plan

Build Env
Refine Env

ExecuteMeasure

Figure 3.1Verification cycle.

Building a verification plan is the core of a verification project. It includes following important
steps: (i) identification of all actors that are concerned with the project execution, (ii) preparation of
planning sessions and planning documents, (iii) brainstorming of product functionalities, (iv) struc-
turing the verification plan, (v) capturing features and attributes, and (vi) formulating the verification
environment and the coverage implementation.

3.6 Verification Environment

3.6.1 Introduction

The verification environment must be implemented in a way that it should allow all scenarios in
the verification plan to be verified according to the guideline of the target verification methodol-
ogy. Generally, there can be different verification environment architectures available to achieve
this target. This section briefly discusses a verification environment architecture that facilitates the
application of the CDV methodology and the assertion-basedverification methodology. The OVM,
which provides the best outline to accomplish a CDV is also discussed in this section. This section
emphasizes on the architectural blocks of a verification environment, how these blocks are generally
used in the verification environment and the features that should be supported by each block.

Abstract View of a Verification Environment

A verification environment is connected to a DUV through the boundary signals of that DUV. The
boundary signals can be grouped into interfaces that are comprised of multiple ports. Each port
represents interconnected signals that jointly describe an interface protocol supported by the DUV.
In this way, a DUV is viewed as a block with a number of abstractinterfaces suggesting a layered
architecture for its verification environment. Figure [3.2] shows a layered architecture of a veri-
fication environment in which the lowest layer components directly interact with DUV interfaces.

3.6 Verification Environment 52

Software
Stack

Hardware

Software
Veri fication
Component

Int erface
Veri fi cation
Component

Int erface
Veri fication
Component

Int erface
Veri fi cation
Component

Module
Veri fi cation
Component

Module
Veri fication
Component

System
Veri fication
Component

D
U

V

Veri fi cation Environment

Logical Port Software Port Physical Port

Figure 3.2Abstract view of a verification environment.

Each higher layer component deals with increasingly higherlevels of verification abstraction that
correspond to more complex verification scenarios [20,22].

This verification environment is structurally comprised ofinterface verification components
(IVCs) and system/module verification components (SVC/MVCs). The IVCs provide abstraction
for physical ports to interact with the DUV. The SVCs/MVCs make use of this feature to inter-
act with the DUV at the level of abstraction provided by the IVCs. In this architecture, software
verification components are a specific type of IVCs that interact with the software stack of the DUV.

There are two operational modes for every verification component, as given below:

• Active mode and

• Passive mode.

An SVC in an active mode generates transactions for lower layer verification components while
an IVC in active operational mode generates transactions atDUV ports. A passive verification
component does not include any stimulus generation capability. It only monitors the verification
environment traffic. These modes must be correctly implemented when a verification component is
reused in the next design integration step.

3.6.2 Interface Verification Component (IVC)

The IVC is used to interact with one or multiple DUV ports thatsupport the same protocol. The
IVCs also include supplementary features to monitor and collect coverage information of the physi-
cal port they interact with. The architecture of an IVC is geared less towards generating full verifica-
tion scenarios since concurrent interaction with multipleports is required for this purpose. However,
this architecture is more equipped to give an abstract view of DUV ports to higher layer verification
components. They monitor the traffic on DUV ports by protocolchecking and coverage collection.

3.6 Verification Environment 53

Figure [3.3] shows the architecture of an IVC that contains (i) agent components and (ii) a bus mon-
itor. Each IVC interacts with a DUV port through an agent component that again includes following
components:

• A driver,

• A monitor and

• A sequencer.

Details about these components are provided in Section (3.7.3).

Bus Monitor

Moni tor &
Coverage

Dri ver

DUV

Interface Veri fication Environment

Sequencer

Agent-1

Agent-n

L
og

ic
a

l P
o

rt ^
Figure 3.3Block diagram of the interface verification component.

3.6.3 Module/System Verification Component

A three-layer verification environment is shown in Figure [3.2], which is composed of (i) IVCs, (ii)
MVCs and (iii) SVCs. Although, practically a verification environment may have more layers. The
SVCs include system level set-up generation functionalityand perform end-to-end checking. The
internal architecture of MVCs and SVCs is similar because they both interact with higher and lower
layer verification components. The architecture of IVCs is different since they interact directly with
the DUV ports. The SVCs generally emphasize on the end-to-end behavior of the DUV rather than
the behavior of its individual blocks. In this approach it isassumed that smaller blocks have already
been verified.

An SVC emphasizes on (i) bugs in modules that can be verified only as a part of the overall sys-
tem, (ii) wrong assumptions of the designer about the moduleoperation, (iii) wrong wiring between
system modules and (iv) problems with module interactions arising from protocol mismatches. Fig-
ure [3.4] shows the architecture of a SVC containing multiple agentswhere each agent provides
the same functionality while interacting with a different set of lower layer verification component.
Each SVC includes (i) the sequencer, (ii) the verification environment (VE) monitor and coverage
collector, and (iii) the DUV monitor and coverage collector.

To provide information about the current state of the DUV, theVE monitorinteracts with moni-
tors in the lower layer verification components. For example, system monitors track the monitors in

3.7 Open Verification Methodology (OVM) 54

Agent -1

Sequencer

Scoreboards Predictors
VE Moni tor &

Coverage Collector

DUV Monit or &
Coverage Collector

DUV
Interface

Veri fication
Component

In terface
Veri fi cation
Component

Agent-N

Module/System Veri fication Component

Figure 3.4Block diagram of the module/system verification component.

the IVSs and in the MVCs. Since internal signals of the DUV cannot be tracked through monitors
attached to the DUV ports, a DUV monitor is used to track theseinternal signals. However, a thin
layer of a wrapper between the DUV monitor and the DUV enablesthe reusability of the verifica-
tion environment. A combination of both monitors (the VE monitor and the DUV monitor) allows
a gray-box verification approach. A sequencer uses the information provided by these monitors to
generate end-to-end scenarios. In an SVC, the sequencer is generally responsible for operations
including (i) the initialization of the DUV and the verification environment, (ii) the configuration
of the DUV and the verification environment, and (iii) end-to-end scenario generation for the DUV
verification. Thescore boardingis used to check for potential problems including (i) data values
being different than expected, (ii) packets being receivedwhen not expected or (iii) a packets not
being received when expected. Thecoverage collectionis an SVC that focuses on collecting in-
formation including (i) the basic traffic of each interface,(ii) the combined effective traffic at all
interfaces, (iii) the states of the internal design, (iv) the generated sequences, (v) delay and through-
put information (performance information), (vi) the configuration modes, (vii) resets and restarts,
and (viii) errors observed and errors injected.

3.7 Open Verification Methodology (OVM)

3.7.1 Introduction

The “Open Verification Methodology” (OVM) is the first language-interoperable open verifica-
tion methodology that is based on the IEEE standard 1800TM -2005 SystemVerilog Std. It provides
a methodology and a supplementary library that allows usersto develop modular and reusable ver-
ification environments. All components in verification environments interact with each other via
standard transaction-level modeling (TLM) interfaces. OVM allows full integration with other com-
monly used languages. Following are the important featuresprovided by OVM [20,22].

• Data Design: OVM provides an infrastructure for class property abstracting and simplifies
the user code by offering facilities for setting, getting and printing the property of variables.

• Stimulus Generation: OVM provides specialized classes and infrastructure to enable a fine-

3.7 Open Verification Methodology (OVM) 55

grain control of sequential data streams for module-level and system-level stimulus genera-
tion.

• Building and Running the Verification Environment: The SystemVerilog OVM Class Li-
brary provides base classes for each functional aspect of a verification environment.

• Coverage Model Design: The incorporation of a coverage model into reusable open ver-
ification components (OVCs) is a good practic. OVM offers a coverage model design to
implement coverage models efficiently.

• Built-in Checking Support: OVM provides a built-in checking support that is a good prac-
tice for incorporating the physical-layer and the functional layer checks into a reusable OVC.

3.7.2 OVM and Coverage Driven Verification (CDV)

OVM offers a framework to achieve a CDV that significantly reduces the time spent on the veri-
fication of a design by combining (i) automatic test generation, (ii) self-checking test benches and
(iii) coverage metrics. The main purposes of CDV are (i) to reduce the effort and time spent in
generating hundreds of tests, (ii) to ensure a thorough verification using up-front goal setting, (iii)
to get early error notifications and (iv) to deploy a run-timechecking and error analysis to simplify
debugging. A CDV flow is different from a directed-testing flow. In CDV, an organized planning
process is followed to set up the verification goals. Then a smart test bench is created to generate
a legal stimuli and to send it to the DUV. The coverage monitors are added to the environment to
measure the verification progress and to identify non-exercised functionality. Checkers are added
in the verification environment to observe undesired behaviors of the DUV. After the implemen-
tation of a coverage model and a test bench, simulations are launched to achieve the verification.
CDV supports directed-testing in addition to the constrained-random verification. Although, it is
preferred that most of the work is done through the constrained-random testing before writing a
time-consuming deterministic test. This test is used to activate specific scenarios that are very diffi-
cult to reach with random generation.

3.7.3 OVM Test bench and Environments

A test bench developed using OVM is comprised of reusable verification environments called
OVM verification components (OVCs). An OVC is a configurable verification environment that is
ready-to-use for an interface protocol, a module in a design, or a full system. Each OVC contains
elements for simulation, protocol testing and coverage collection. To verify an implementation, an
OVC is applied to the DUV. The OVC can be an MVC, an SVC or an IVC depending upon its nature
of implementation. An OVC can be reused and configured according to its operational requirements.
An OVC can be comprised of different types of elements according to its operational needs. These
components are briefly described below. However, more details about these components can be
found in the official OVM manual [22].

Data Item (Transaction)

A data item can be considered as an input transaction to the DUV in which its fields and character-
istics are derived from its specification. For example, the Ethernet protocol specification identifies

3.7 Open Verification Methodology (OVM) 56

valid data values and attributes of an Ethernet packet (transaction). A number of meaningful tests
can be generated by randomizing data items and sending them to the DUV.

Driver (BFM)

The driver is an active element in an OVC that implements the logic to drive a DUV. It repeatedly
receives data items and sends them to the DUV by monitoring and driving DUV signals. For exam-
ple, a driver emulating the logic to control the read/write signal, the data bus and the address bus for
a READ transfer.

Sequencer

The sequencer is used to generate the stimulus for a DUV by controlling the generation of data
items. It allows a constrained random generation of data items and on request it sends these data
items to the driver. Each sequencer component has an associated sequence library where its associ-
ated sequences are stored.

Virtual Sequencer

The virtual sequencer is a special component in an OVM verification environment that is used to
create multi-sided verification scenarios. It also synchronizes the timing and data between multiple
interfaces. A virtual sequencer offers control over the verification environment for a specific test.
It interacts with downstream sequencers and controls theirexecution of sub-sequences belonging
to their sequence libraries. Hence, a virtual sequencer does not need to have a default sequence
item type. An executed sub-sequence may belong to the local virtual sequencer’s library or to the
sequence libraries of any downstream sequencer (connectedto the local virtual sequencer through a
sequence interface).

Monitor

The monitor is a passive component that only samples DUV signals but does not drive them.
Additionally, it performs checking and collects coverage information. The monitor is used to extract
signal information over the bus or DUV interfaces. This information is then translated to data items
(transactions) which are finally available for other components. There are two types of monitors:
(i) agent monitors and (ii) bus monitors. The agent monitor is a local monitor of a specific agent
that operates on signals and transactions related to this agent only. The bus monitor is responsible
to handle all signals and transactions on the bus or DUV interfaces.

Agent

The agent is a container that is used to name, configure and interconnect a sequencer, a driver
and a monitor component. To reduce the work for a test writer,OVM suggests the creation of
more abstract containers e.g., multiple agents can be encapsulated within an OVC. An agent can be
either a component that initiates transactions to the DUV ora component that reacts to transaction
requests. An agent should be configurable to operate in an active mode or a passive mode (only
monitors DUV activities).

3.8 OVM Class Library 57

Environment

The environment is a top-level component of the OVC. It may contain one or more agents and
some other components e.g., bus monitors. It enables the customization of topology and behavior
of including components through configuration properties.For example, an agent can be changed
from an active mode to a passive mode, or a bus monitor can perform checking and collect the
coverage information of activities which are not corresponding to any single specific agent.

3.8 OVM Class Library

OVM class library is a SystemVerilog based class library containing all essential components
required to implement well-structured, configurable and re-usable verification components and ver-
ification environments. The library is consisted of base classes, macros and utilities. The verifica-
tion environments are developed by hierarchically encapsulating and instantiating all components.
These components are controlled by a set of phases to initialize, run and complete the tests. The
base class library defines these phases. However, these phases can be extended to meet specific
needs of a project. The library provides a vigorous set of built-in features that are needed for the
verification e.g., print, copy, etc. Using the OVM library increases the code readability because
each parent class predefines its component’s functions in the library. Moreover, the class library
provides a flexible environment construction (i.e., OVM factory) to facilitate the implementation of
verification environments. More details about the OVM library and the OVM factory can be found
in the official OVM manual [22].

3.8.1 Transaction-level Modeling (TLM)

All OVM components communicate with each other through standard TLM interfaces. This stan-
dard communication infrastructure improves the reusability of components. An OVM component
implementing a TLM interface can interact via its interfacewith any other component that imple-
ments this interface. A set of transaction level communication interfaces and channels are provided
by OVM for the transaction level interconnection between components. In this way, each compo-
nent is isolated from changes in other components.

Transaction Level Communication

Transaction level interfaces define a set of methods that take transaction objects as arguments. A
set of methods for a particular interface is defined by a TLMport while their implementation is
provided by a TLMexport. When a port is connected to an export, calling a port method results in
the execution of its implementation provided by the export.OVM provides atlm_fifochannel that
enables components to operate independently. This channelimplements all TLM interface methods
necessary for such a communication. A producer puts the transaction into this FIFO channel while
a consumer independently fetches this transaction. This channel provides both blocking and non-
blocking interfaces. A special type of TLM communication isprovided by OVM which is called
analysis communication. This communication is for components such as monitors, which may need
to generate a stream of transactions without taking care of its targets (whether there is any connected
or not). This TLM communication is supported by providing the analysis port, the analysis export

3.9 SystemC 58

and the analysis fifo channel. More details about this communication can be found in the official
OVM manual [22].

3.9 SystemC

SystemC is a C++ class library developed to support (i) system level designs, (ii) hardware ar-
chitectures, (iii) cycle-accurate models for software algorithms, (iv) interfaces of SoCs and (v) exe-
cutable specifications. The SystemC class library was standardized in 2005 as IEEE 1666TM -2005.
Currently version 2.2 of the library is currently availablewhile version 3.0 will be available in near
future. The later version will be extended to cover the modeling of operating systems and also to
support the development of models of embedded software. Moreover, additional libraries can be
provided to support a particular design methodology e.g., SystemC Verification Library (SCV). The
Open SystemC Initiative (OSCI) developed the SystemC ClassLibrary.

Following are the key features provided by SystemC:

• sc_module: It is a C++ class that is appropriate for defining hardware modules that contain
parallel processes.

• A method of defining functions that model parallel threads of control within asc_module.

• sc_port and sc_export: Two classes representing points of connection for asc_module.

• sc_interface: This class tells about software services that are required by asc_port class or
provided by asc_export class.

• sc_prim_channel: A class representing channel connections.

• data types: SystemC supports 2-state and 4-state logic data types.

Recently, the TLM group of OSCI issued the second version of Transaction Level Modeling,
which defines an interface that is used to write high-level software models of hardware. More details
aboutSystemCandOSCI TLM-2.0can be found in their official manuals [23,24].

3.10 SystemVerilog Direct Programming Interface (DPI)

3.10.1 Overview

This section gives a brief overview about the SystemVerilogDPI. Details about the DPI can be
found in the officialSystemVerilog manual[25].

SystemVerilog provides an interface to interact with foreign programming languages (such as
C/C++). The interface is called SystemVerilog Direct Programming Interface (DPI) and it is partic-
ularly to facilitate C language. The DPI makes it much easierto call C functions within SystemVer-
ilog and to call SystemVerilog functions within C. A big advantage of the DPI is the reusability of
existing C code without having knowledge of SystemVerilog.By using the DPI, we only need to
define a C linkage semantic, though the actual implantation of the foreign programming language
remains transparent.

http://www.cse.iitd.ernet.in/~panda/SYSTEMC/LangDocs/UserGuide20.pdf
http://www.embecosm.com/appnotes/ean1/sysc_tlm2_simple_or1k.pdf
http://www.vhdl.org/sv/SystemVerilog_3.1a.pdf

3.10 SystemVerilog Direct Programming Interface (DPI) 59

C functions can be called within SystemVerilog by using theimport “DPI” declaration. These
functions and tasks are calledimportedfunctions and tasks. It is necessary to declare every imported
task and function. It is calledimport declaration. To call SystemVerilog functions and tasks within
C, they must be specified in theexport “DPI” declaration within SystemVerilog. These functions
and tasks are calledexportedtasks and functions. All DPI functions are supposed to finishtheir
execution instantly in zero simulation time. There is no synchronization mechanism provided by
the DPI except data exchange and transfer of control. Only SystemVerilog data types can be passed
between SystemVerilog and foreign languages through imported and exported function/task argu-
ments and results. However, there are some restrictions on the notations of these data types. An
example of an import declaration and an export declaration is given below. More details can be
found in official manual of SystemVerilog [25].

• Import Declaration

im po r t "DPI−C" f u n c t i o n i n t c a l c _ p a r i t y (i n p u t i n t a) ;

• Export Declaration

e x p o r t "DPI−C" my_cfunct ion = f u n c t i o n myfunct ion ;

Chapter 4
Functional Verification of CPU Subsystem

4.1 Introduction

This chapter provides details about the functional verification of the Subsystem and its compo-
nents. Section4.2describes the verification plan and the implemented test bench for the functional
verification of the memory system. Section4.3 gives details about the verification plan and the
implemented test bench which was used for the functional verification of the triple-layer Sub-bus
system. Section4.4outlines the verification plan for the functional verification of the OR1200 core.
This section also describes the development of a golden model, which was used as a reference model
for the verification of the OR1200 core and developed by usingthe ISS of this processor. Further,
this section also describes the implementation of a SystemCwrapper around the ISS so that the
golden model can incorporate the verification environment.The development of a SystemVerilog
wrapper around the OR1200 (DUV) will be also described in this section. Section4.5 describes
the development of a verification environment for the functional verification of the OR1200 core by
following the OVM. This section also outlines the architecture of this verification environment and
describes the test bench (employed inside the verification environment).

4.2 Functional Verification of Memory System

4.2.1 Verification plan

We planned to use SystemVerilog for the constrained random verification of the memory system
of the CPU Subsystem. As this memory system includes a ROM anda RAM memory with Wish-
bone interfaces. The ROM was implemented by using a RAM inside and both memories use same
Wishbone interface. Therefore, the functional verification of the RAM (only) will be discussed
here. However, we separately need to verify the ROM initialization with an Intel Hex file. The plan-
ning of a verification environment for the functional verification of this memory system includes the
following key features.

• An interfacefor the structural connectivity between the test bench and the DUV.

• Development of abus functional modelcomplying the Wishbone specifications.

60

4.2 Functional Verification of Memory System 61

• Development of atest librarycontaining the test cases.

• Development of atest bench.

These components are discussed below in detail.

Interface

SystemVerilog provides aninterface construct for:

• modeling the communication between the functional blocks,

• the structural connectivity between the blocks,

• easier migration from the system level designs down to the RTL description and

• easier reusability of the designs by hiding the communication details.

The interface includesmodportdeclarations to specify the directions of the ports for different
blocks which can be connected through this interface. Thereare two types of modports specify-
ing the port directions for the Master blocks and the Slave blocks. The interface also contains a
clocking blockfor the cycle based semantics where the DUV signals (input and output) are sampled
(registered before a clock edge) and synchronized at the clocking events.

Bus Functional Model

The implementedbus functional model(BFM) in this verification environment replicates the be-
havioral model of a Master component with a Wishbone interface. Therefore, this BFM can be
used as a Master component complying the Wishbone specifications. This BFM includes a Sys-
temVerilog interface (Section4.2.1) for the cycle based communication with the memory system
(ROM/RAM). This function model implements the following behaviors of a Wishbone Master com-
ponent.

• Idle cycle : places an idle cycle.

• Single READ request : sends a single READ request for a given address, and receive
the read data back.

• Single WRITE request : sends a single WRITE request by supplying the address and
data.

• Block READ request : sends a block of READ requests by providing an array of ad-
dresses, and gets the received data array back.

• Block WRITE request : sends a block of WRITE requests by providing arrays of ad-
dresses and data, respectively.

This BFM drives the signals to the DUV and samples them through its interface which complies
the Wishbone interconnection standard.

4.2 Functional Verification of Memory System 62

Test Library

This test library (RAMTest) is basically a SystemVerilogprogram which contains several types
of planned tests for the functional verification of the memory system. The behaviors of the BFM
(Section4.2.1) are used to execute these tests. This library includes the following tests.

1. Sequential single WRITE/READ access test

This test generates a sequential address, randomizes a dataitem and sends the WRITE request
to the DUV1 by using the“single WRITE request” behavior of the BFM. After the successful
completion of the WRITE request this test sends a READ request for the same address by
using the“single READ request” behavior of the BFM. Then it compares the written data with
the received one. If the test passes, this whole procedure isrepeated again for next sequential
address until it covers the complete address space of the DUV.

2. Random single WRITE/READ access test

This test is same as the“sequential single WRITE/READ access test” except that it generates
random addresses (instead of sequential ones). It is to testthe real-time scenarios where
memory accesses are usually for random addresses. This testrepeats the testing process for
the number of times set by the user.

3. Random block WRITE/READ access test

This test randomly generates arrays of addresses and data, and sends the block WRITE re-
quest to the DUV. It uses the“block WRITE request” behavior of the BFM to write this data
array to the memory. After a successful completion of the block WRITE request this test
sends a block READ request by using the“block READ request” behavior of the BFM. Same
address array is supplied to this behavior which was used forwriting data array. The received
data array is compared with the written data array. If the test passes, the whole process is
repeated again with new randomized arrays of addresses and data. This test repeats for the
number of times set by the user, who can also set the length of the block.

4.2.2 Test Bench

RAMTestbench is the test bench used for the functional verification of the RAM (DUV), which
instantiates all components, connects them together and drives the system clock and the system reset
signals to these components. This test bench includes:

• a RAM component (DUV),

• a SystemVerilog interface,

• a bus functional model (BFM) and

• a test library (RAMTest).

1ROM is a read only memory, these tests are only for the RAM verification.

4.3 Functional Verification of Triple-layer Sub-bus 63

Figure [4.1] shows the architecture of the RAMTestbench. By considering the BFM as a virtual
Wishbone Master component, the test library uses it to run different tests (e.g., Random block
WRITE/READ access test) on the DUV for its exhaustive functional verification. The verification
results of these tests will be given in Section (5.3).

W
b_

if

Test-library

W
b_

if

RAM
(32 bits)

Wb signals

RAMTestbench

BFM

clk rst

Figure 4.1RAM Test bench.

4.3 Functional Verification of Triple-layer Sub-bus

4.3.1 Verification plan

We planned a CDV of the Sub-bus system using SystemVerilog based constrained random stimulus
generation. Additionally, we decided to implement a coverage model to determine the verification
closure. To verify the Sub-bus system we enhanced the existing verification actors those were
used in the verification environment of the RAM component. All enhancements in the existing
verification environment and new developments are given below.

• The development of a configurable test library (initiator)by enhancing the existing test library
(RAMTest) used for the verification of the RAM.

• The implementation of a coverage model.

• The development of a test bench (Sub-bus-Testbench).

These components are discussed below in detail.

Test Library (initiator)

The Sub-bus system has three Master interfaces and four Slave interfaces. Hence, we planned to
connect three BFMs (Master components) and four RAMs (Slavecomponents) to these interfaces
respectively. As the test library (initiator) uses these BFMs to drive different tests on the DUV, we
needed to make this library configurable for each particularBFM. This test library (initiator) is an
extension of the RAMTest library which is capable of drivingonly a single BFM and of generating
the addresses for a complete given address space. Thereby, we needed to enhance the RAMTest

4.3 Functional Verification of Triple-layer Sub-bus 64

library in such a way that it can support three BFMs and dividea given address space into four
address spaces, one for each Slave component (RAMs).

To have a functioning system, we need a correct configurationof the Sub-bus itself and of the
Master and the Slave components connected to it (see Section2.8.3). To access a Slave component
through the Sub-bus system, a Master component has to send anaddress that qualifies the address
space of this Slave component. As the test library is responsible of generating the addresses for
the BFMs, it was required to make it configurable so that it cangenerate the addresses within a
specific sub-space of an address space. Hence, this test library (initiator) was required to divide the
total address space of the Sub-bus system into four sub-spaces. The addresses generated for a Slave
component include the slave-id in the MSBs (configurable). The address space of each connected
Slave component is divided into three sub-spaces, one for each BFM. A BFM can only access this
particular address space inside the memories. This subdivision of the Slaves’ address spaces is
necessary to handle the overlapping problem.

Example Figure [4.2] shows a 64 Kbytes RAM having total address space : 32’h00000000 7→

32’h0000FFFF. The accessible address space for the BFM-1 is: 32’h000000007→ 32’h00005555,
for BFM-2 it is: 32’h000055567→ 32’h0000AAAA, and for BFM-3 the accessible address space
is: 32’h0000AAAB 7→ 32’h0000FFFF.

00000000
…
…
…
00005555
00005556
…
…
…
0000AAAA
0000AAAB
…
…
…
0000FFFF

BFM 1

BFM 2

BFM 3

RAM
(64 Kbytes)

Figure 4.2RAM address space subdivision.

We need three instances of this test library, which are configured to drive three BFMs. Each
instance drives a single BFM and generates all addresses within the accessible address range of its
BFM. However, each BFM can randomly access the connected Slaves components over the Sub-bus
system. Each instance of the test library (initiator) can execute all tests which are provided by the
RAMTest library (see Subsection4.2.1).

Coverage Model

A coverage modelwas implemented to determine that the DUV has been exposed toa satisfactory
variety of the stimuli and it is functioning correctly. We created a database ofSystemVerilog bins
to store a histogram of the addresses accessed by each BFM. Weplanned to cover the requested
addresses by the BFMs and to cover them at the Slaves’ sides too. In this way, we will be able
to cross-verify how many times an address was accessed by a BFM and how many times a Slave
component correctly responded the requests for this address.

4.3 Functional Verification of Triple-layer Sub-bus 65

4.3.2 Test bench

This test bench (Sub-Bus Test-bench) was used for the functional verification of the Sub-bus
system. It instantiates all components those are required for the verification, correctly configures
them, connects them together, and drives the system clock and the system reset signals to these
components. The including components are

• a Sub-bus system,

• four RAM components,

• three interfaces,

• three bus functional models,

• three test libraries (one for each BFM) and

• a coverage model.

Figure [4.3] shows the architectural look of the test bench that was usedfor the functional verifi-
cation of the Sub-bus system. The verification results are given in Section (5.4).

Sub-Bus Test-bench

Initiator1

W
b_

if
RAM

(32 bits)

Wb Signals

W
b_

if_
da

ta

Initiator2

W
b

_i
f_

in
st

Initiator3
W

b_
if

RAM
(32 bits)

W
b_

if

RAM
(32 bits)

W
b_

if

RAM
(32 bits)

W
b

_i
f_

m
bu

s

m
bu

s_
if

da
ta

_i
f

in
st

_i
f

R
O

M
_i

f
R

A
M

_i
f

sb
us

_i
f

sc
pu

_i
f

Trip le-layer
Sub-Bus

Wb Signals

coverage

Wb Signals

Wb Signals

coverage

Wb Signals

Wb Signals

Wb Signals

BFM
3

BFM
2

BFM
1

clkrst

coverage

coverage

coverage

coverage

coverage

Figure 4.3Test bench for triple-layer Sub-bus system.

4.4 Functional Verification of OR1200 Core 66

4.4 Functional Verification of OR1200 Core

4.4.1 Verification plan

The functional verification of a heavily pipelined processor is a challenging task. We planned
a simulation based verification of the OR1200 core by using the constrained random generation
methodology. We planned agrey-box verification approach. Therefore, it was required to monitor
the internal signals of the OR1200 core along with areference modelfor the comparison. We used
the architectural simulator (ISS) of the OR1200 core as its golden model. To develop a configurable
and reusable verification environment, we planned to followthe OVM. As the verification environ-
ment uses SystemVerilog interfaces to communicate with theDUV (OR1200), we implemented a
SystemVerilog wrapperaround the OR1200 core. This wrapper provides interfaces toaccess the
DUV. Details about these developments will be discussed later in this section. The following con-
cerns are the most important to be taken into account while planning the functional verification of
the OR1200 core.

• What to verify.

• When to verify.

• How to verify.

These points are discussed below in detail.

What to verify

Since the OR1200 core is a complex implementation and its verification is a challenge, we had
to identify the most important aspects those must be verified. These aspects play a vital role in the
correct execution of this processor. The correct working ofthese aspects verifies that the core is
correctly operational. The aspects taken into account are listed below.

• Verify, if the OR1200 always generates a correct program counter (PC).

• Verify, if the OR1200 correctly updates its state in its supervision register (SR).

• Verify, if the OR1200 correctly saves its context in case ofan exception (ESR/EEAR/EPCR).

• Verify, if the OR1200 always stores correct data to corresponding addresses in the data mem-
ory.

• Verify, if the OR1200 correctly stores the execution results in its general purpose registers.

When to verify

To identify the correct time to monitor the DUV’s features one must have a thorough understand-
ing of the core’s architecture and its working, particularly about the instruction pipeline execution
(Section2.6.5). This task becomes more complicated when the exception model and the variable ex-
ecution time of different instructions are taken into account. We also need to handle jumps/branches
and delay slot executions. Another important side is to consider thefreeze logic andflush-pipeline

4.4 Functional Verification of OR1200 Core 67

logic of the OR1200 core. These two logics vigorously control the OR1200 pipeline execution.
However, all participants those are required to be monitored areregisters. Hence, they all have
enable signals for their update. These register enable signals identify the correct points to monitor
these registers. However, along with these enable signals we also need to manage the pipeline’s
control logic, the exception control logic, the freeze logic and the flush-pipeline logic. Since these
logics control the register enables. In pipeline execution, different pipeline stages may operate on
different registers or may operate on different parts of a single register. Thus, identifying a correct
execution stage to monitor a register is very important.

How to verify

We need a robust verification environment that feeds the instructions to the OR1200 core, handles
Load/Store requests from the core, and correctly monitors the important registers of the core. Addi-
tionally, it is very important for an exhaustive verification to fill the complete instruction pipeline of
the core and account the dependencies between the instructions. In this verification environment, an
instruction is first sent to the golden model (ISS). After itsexecution the status of the golden model
is obtained and stored. This instruction is then sent to the DUV and all important registers are
monitored when this instruction updates them in different pipeline stages. These registers’ values
are compared with the status which was received from the ISS.The ISS executes every instruction
in zero time while the OR1200 core is a hardware implementation (can be registered) having five
instructions in its pipeline. Hence, this verification environment must include a synchronization
mechanism between the golden model and the DUV. More detailsabout this verification environ-
ment will be given in Section (4.5).

4.4.2 Instruction Set Simulator as a Reference Model

We used theInstruction Set Simulator (ISS) of the OR1200 core as a reference model for the
functional verification of the core. This ISS is an architectural simulator, namedOr1ksim, is a
generic simulator capable of emulating OpenRISC1000 architecture based systems. It is an open
source simulator that can be freely downloaded from theOpenCores. It provides high-level fast
architectural simulation for an early code analysis and a performance analysis of systems. It sup-
ports all peripherals and system controller cores those aresupported by OpenCores. The latest
version (0.3.0) of the Or1ksim provides a network socket forremote debugging with a GNU de-
bugger (GDB) support for different environments (OR1K processor model, memory configurations
and sizes, configuration of peripheral devices). This new version also offers the choice to either use
the simulator standalone or as a library. The new version also includes an OSCI TLM 2.0 interface.
This ISS is written in C. Its standard configuration can modelthe main memory, the CPU, and a
numbers of other peripherals [17,18].

To use the ISS as a golden model, we needed to embed the existing ISS into a SystemC module.
The module is also required to support theDirect Programming Interface (DPI) to incorporate the
SystemVerilog based verification environment. The development involves several steps, as given
below.

• Modify the existing Or1ksim (ISS) library to provide a set of public interfaces to access it.

• Define a SystemC module as a wrapper around this library thatcan access its public inter-
faces.

http://www.opencores.org/

4.4 Functional Verification of OR1200 Core 68

• Implement the DPI support inside this SystemC wrapper so that it can be integrated within
the SystemVerilog based verification environment.

These all steps are individually discussed below.

Compiling Or1ksim Library

The installation of the OR1200 GNU toolchain package (Section 2.8.2) includes the Or1ksim
simulator but it only works standalone for an early code analysis and a performance analysis of the
system. In order to use this simulator as a reference model, we needed to use it as alibrary with a set
of public interfaces to access it. This library can be configured to model OpenRISC1000 architecture
based systems. The Ork1sim library, used in this project, was configured to model only the CPU
and somegeneric peripherals. It does not model the main memory, the cache system, the memory
management or other peripherals, since our DUV does not include such components. Similar to the
standalone implementation of the simulator, a configuration file is used to configure the library to
model different components in the system. The Or1ksim (0.3.0) offers the facility to use itself as a
library, and provides two upcall functions to call up to the SystemC model of which it is part, to read
and write from the peripheral address space. However, we needed to implement an additional upcall
function to access the status of the ISS. Further, we also needed to implement aDirect Programming
Interfaces (DPI) to access this library within the SystemVerilog basedverification environment.
These developments are discussed in the subsequent subsections. Here we will discuss how to
compile the Or1ksim library with Questasim 6.5 on an Ubuntu 8.10 platform. The involved steps to
compile this library are given below.

− Download t h e Or1ksim−0.3 .0
− u n t a r i t
− Set env i ronm en t v a r i a b l e s :

CC=/ gcc−4.1.2− l inux_x86_64 / b in / gcc
CXX=/ gcc−4.1.2− l inux_x86_64 / b in / g++
Note : The GCC f o r b u i l d i n g t h e l i b r a r y has to be t h e same as t h e

s i m u l a t i o n uses .
− Make a d i r e c t o r y Or1ksim−0 . 3 . 0 , hav ing t h e sub−d i r e c t o r i e s : /source and / b u i l d
− Move t h e c o n t e n t s o f t h e Or1ksim−0.3 .0 to t h e Or1ksim−0 . 3 . 0 /source
− Go to t h e Or1ksim−0 . 3 . 0 / b u i l d
− Con f igu re : . . /source/ c o n f i g u r e −−p r e f i x =/ home / . . . / or1ks im−0 . 3 . 0 / i n s t a l l

−−enable−debug
− make a l l i n s t a l l

When the compilation is finished, we get a header file that defines the public interfaces to the
Or1ksim library. This header file should in../Or1ksim-0.3.0/install/include/or1ksim.h[23].

Using Or1ksim as a Library

In the standalone implementation of the Or1ksim, themain function initializes the ISS; after that
it stays in a loop and executes the instructions. However, inthe library implementation thismain
function is replaced by a series of functions those form the interfaces to the library. The header file
(or1ksim.h) contains the declaration of these functions while their implementation is provided in the
libtoplevel.c file. These functions are described below.

4.4 Functional Verification of OR1200 Core 69

• or1ksim_init (...)

This function initializes the simulator. It has several arguments those are given below.

Config_file:This file provides the configuration data to the simulator.

Image_file:This argument is used to pass the program image to the ISS. By default, the ISS
takes the .ELF executable format of program images. However, it can also take the .IHex
executable format. Since we want to fetch instructions and data from external test bench, an
empty .ELF image will be passed in this argument. A sample empty ELF executable file has
been given in Appendix (A.2.1) [26].

To read or write from the peripheral address space the ISS needs to be able to call up
to the SystemC model of which it is part. A standard implementation of the ISS library
provides two upcall functions to read and write from the peripheral address spaces. These
functions are defined by the (i)upr and (ii) upw , fourth and fifth function parameters of the
or1ksim_init(). In the golden model we modified these upcall functions according to our
requirement. In our implementation the ISS uses the “upr” upcall function to read the next
instruction from the SystemC model. If this is a Load instruction the same upcall function is
used again to read data. However, in case of a Store instruction the “upw” upcall function is
used to write data up to the SystemC model. Since it was required to access the internal sta-
tus of the ISS (after every instruction’s execution), a third upcall function (upcpustatus) was
implemented in the ISS to write its status up to the SystemC model. This ISS status includes:
(i) the PC register, (ii) the supervision register (SR), (iii) the exception supervision register
(ESR), (iv) the exception program counter register (EPCR),(v) the exception effective ad-
dress register (EEAR), (vi) all general purpose registers (GPRs) and (vii) the instruction that
was just executed on the ISS.

The implementation of these upcall functions is provided inthe SystemC model (C++),
while the ISS (C) can access them on demand. The function calls between C and C++
could be awkward. Therefore, upcalls were implemented asstatic functionsin the SystemC
model. The SystemC model calls theor1ksim_init(). To enable the upcall functions for
invoking the member functions of this SystemC model a pointer (class_ptr) to this Sys-
temC module instance is passed as an argument to these upcallfunctions. Third argument
(class_ptr) is the pointer to the SystemC module class that initializesthe simulator by
calling theor1ksim_init().

i n t o r 1 k s i m _ i n i t (cons t char * c o n f i g _ f i l e ,
cons t char * i m a g e _ f i l e ,
vo id * c l a s s _ p t r ,
unsigned long i n t (* upr) (vo id * c l a s s _ p t r , unsigned long i n t addr ,

unsigned long i n t mask) ,
vo id (* upw) (vo id * c l a s s _ p t r , unsigned long i n t addr , unsigned long

i n t mask , unsigned long i n t wdata) ,
vo id (* u p c p u s t a t u s) (vo id * c l a s s _ p t r , vo id * c p u _ s t a t u s P t r)) ;

Details about the implementation of the upcall functions inthe SystemC model can be found
in Section (4.4.3).

4.4 Functional Verification of OR1200 Core 70

• or1ksim_run (...)

This function is used to run the simulator for a specific period of time, passed in its
argument (in seconds). The duration of -1 runs the simulatorforever.

i n t or1ks im_run (double d u r a t i o n) ;

Beside these functions theor1ksim.h header file also includes some other functions those are be-
yond the scope of this report. Details about these functionscan be found in the official Or1ksim
manual [17,18].

Or1ksim Library and Generic peripherals

The library implementation of the Or1ksim makes provision for any additional peripheral to be
implemented externally. Any access (READ/WRITE) to this peripheral’s memory map generates
the upcall to an external handler.

Generic is a new extension in the Or1ksim to model external peripherals [17,18]. Any READ
or WRITE access to the memory map of an implemented generic component generates an upcall.
All peripherals of the Or1ksim are configured in a configuration file (.cfg). A new sectiongeneric
is introduced in this file to describe the external peripherals. Multiple external peripherals can be
described by multiplegeneric sections. Each generic section includes multiple parameters to specify
an external peripheral.

s e c t i o n g e n e r i c
enab led = 1
baseaddr = 0 x00000000
s i z e = 0x7FFFFFFF
b y t e _ e n a b l e d = 1
hw_enabled = 1
word_enab led = 1
name = " Gen_dev1 "

end

The parameters of ageneric component are as given below.

• enabled = 0|1

The option 1 is to enable and the option 0 is to disable this AT Attachment and AT Attachment
Packet Interface (ATA/ATAPI). If you do not specify the value, default is 1 (enabled).

• baseaddr = value

It is the starting address of this generic peripheral’s memory map. Its default value is 0 (not a
sensible value). The size of the memory mapped register space is controlled with a parameter
i.e., size. It is described below.

• size = value

This parameter controls the size of the generic peripheral’s memory mapped space in bytes.
Any access (READ/WRITE) from the ISS to this address space (baseaddr7→ size-1) will be
directed to the external interface (upcall). The value of this parameter should be in power of
2.

4.4 Functional Verification of OR1200 Core 71

• name = “str”

This string specifies the name of the generic peripheral.

• The generic peripheral can be configured to have support forbyte, half-word and word ac-
cesses. If the value is 1 (default) the respective support isenabled.

byte_enabled = 0|1

hw_enabled = 0|1

word_enabled = 0|1

Our requirement for the golden model is to generate the upcalls for a complete 32 bit address
space (0x0000_00007→ 0xFFFF_FFFF) which is byte-addressable. The maximum size that can be
supported by a single generic peripheral is 0x7FFF_FFFF bytes. Hence, three generic peripherals
were needed to cover the complete 32 bit address space. With this configuration the golden model
(ISS) always generates the upcalls either to READ/WRITE data or to fetch a new instruction. The
verification environment feeds the instructions and data tothe ISS. A sample configuration file used
in this implementation can be found in Appendix (A.2.2).

Modification in ISS

We implemented a third upcall function inside the ISS to write its status up to the SystemC model
after the execution of every instruction. More details about this modification can be found in Ap-
pendix (A.2.3).

4.4.3 SystemC Wrapper around Reference Model

After modifying the Or1ksim (ISS) and generating the library, we needed to implement a SystemC
wrapper around this library so that the reference model can incorporate the verification environment.
The key features this SystemC wrapper was required to implement are as given below.

• Provide the implementation of the upcall functions (upr, upw, upcpustatus).

• Call theor1ksim_init() function and pass its arguments.

• Run the simulator forever by calling theor1ksim_run() function in a thread.

• Provide aDirect Programming Interface (DPI) for these upcall functions to be accessible in
the verification environment.

• Implement a synchronization mechanism between the SystemC upcalls and the DPI func-
tions.

• Handle the host machine’s byte order (little-endian/big-endian).

• Provide the implementation to qualify valid data bytes inside the data array by using the
selection bits.

• Parse out the required status information of the ISS and make it available to the DPI functions.

4.4 Functional Verification of OR1200 Core 72

Upcalls

Three static member functions were implemented in the SystemC wrapper to provide the imple-
mentation of the upcall functions of the Or1ksim library. These static functions take a pointer of
the SystemC module’s instance which starts the Or1ksim ISS.This pointer is provided as a third
argument to theor1ksim_int function. Each static function calls inside another C++ class mem-
ber function. This member function actually provides the implementation of its respective upcall
function. When the ISS generates an upcall to its corresponding interface function, it simply calls
this static function because its interface function is a pointer to a C++ static function. This static
function calls a member function which actually implementsthe upcall.

The piece of code (given below) is taken from the implementation of this SystemC wrapper
class. It gives insight about the upcalls’ working in the wrapper. ThestaticWriteUpCPUStatus
is a static function of the wrapper. Its pointer was passed tothe upcall i.e.,upcpustatus (in
the or1ksim_init) for writing up the ISS status. When the ISS generates this upcall, since the
upcpustatus is a pointer to thestaticWriteUpCPUStatus function, the ISS in fact calls this static
function which actually calls a C++ member function inside (writeUpCPUStatus). This member
function parses the incoming status information of the ISS and makes it available to its respective
DPI function.

/ * ===Access t h e CPU s t a t e a f t e r eve ry i n s t r u c t i o n ’ s e x e c t u t io n=== * /
vo id or1k_sc_module_dp i : : s ta t i cW r i teUpC PUSt a tu s (vo id * i n s t a n c e P t r , vo id * c p u _ s t a t u s P t r) {

or1k_sc_module_dp i* c l a s s P t r = (or1k_sc_module_dp i*) i n s t a n c e P t r ;
c p u _ s t a t e _ u p* c p u _ s t a t e _ u p _ p t r = (c p u _ s t a t e _ u p*) c p u _ s t a t u s P t r ;
c l a s s P t r−>wr i teUpCPUStatus(c p u _ s t a t e _ u p _ p t r) ;

} / / s ta t i cWr i teUpCP USta t us ()

The definition of thestaticWriteUpCPUStatus function is given below.

s t a t i c vo id s ta t i cW r i te UpC PUSt a tu s (vo id * i n s t a n c e P t r , vo id * c p u _ s t a t u s P t r) ;

Or1ksim_init Initialization

The or1ksim_init library function is called within the SystemC wrapper to initialize the ISS.
A configuration file, an empty ELF file, the wrapper’s own pointer (itself starting the ISS) and the
pointers to its static functions are passed as arguments to this library function, as given below.

o r 1 k s i m _ i n i t (" . . / s im p le . c fg " ,
" . . / em p ty_e l f " ,
t h i s ,
s t a t i c R e a d U p c a l l ,
s t a t i c W r i t e U p c a l l ,
s ta t i cW r i teUp CPUS ta t us

) ;

4.4 Functional Verification of OR1200 Core 73

Direct Programming Interface

As we have discussed in Section (3.10), the implementation of the “imported DPI functions” is
provided in a SystemC model and it is imported inside a SystemVerilog model by using theimport

“DPI” declaration. On the other hand, the implementation of the “exported DPI functions” is pro-
vided in a SystemVerilog model and it is exported to a SystemCmodel by using theexport “DPI”

declaration. In this verification environment we only needimported DPI functions to be called within
a SystemVerilog based test bench while their implementation is provided inside the SystemC wrap-
per of the golden model. We implemented threeimported DPI functions in the SystemC wrapper
respective to three upcall functions. The hooked-upmember functions2 of the SystemC wrapper
take data and instructions from theseimported DPI functions and feed the ISS with this data and
instructions. These member functions also make the simulator’s status and data available to these
imported DPI function so that it can be sent to the test bench. The definition of thesethreeimported
DPI functions in the SystemC wrapper is given below. The implementation oftheseimported DPI
functions is not provided in this report.

i n t sv_readUp (cons t i n t r i nsn , cons t i n t r da ta , i n t * read_addr , i n t * read_addr_mask) ;
i n t sv_wr i teUp (i n t * waddr , i n t * wdata) ;
i n t s v _ w r i t e S t a t u s U p (c p u _ s t a t e _ r e f* i s s _ s t a t u s) ;

All imported DPI functions must be registered in the SystemC module by using
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION().

SC_DPI_REGISTER_CPP_MEMBER_FUNCTION (" sv_readUp " , &or1k_sc_module_dp i : : sv_readUp) ;
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION (" sv_wr i teUp " , &or1k_sc_module_dp i : : sv_wr i teUp) ;
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION (" s v _ w r i t e S t a t u sU p " ,

&or1k_sc_module_dp i : : s v _ w r i t e S t a t u s U p) ;

All imported DPI functions must be declared in the SystemVerilog environment, as givenbelow.

im po r t "DPI−SC" c o n t e x t task sv_readUp (inpu t i n t r i nsn , inpu t i n t r da ta ,
output i n t read_addr , output read_addr_mask) ;

im por t "DPI−SC" c o n t e x t task sv_wr i teUp (output i n t waddr , output i n t wdata) ;
im por t "DPI−SC" c o n t e x t task s v _ w r i t e S t a t u s U p (output i s s _ c p u _ s t a t u s i s s _ s t a t u s) ;

The DPI identifies an imported function by its name only (not by its parameters). Hence, only
one copy of overloaded functions can be supported [27].
Note: The composite data types (e.g., structure/union) being transferred through the DPI from

SystemC to SystemVerilog (or opposite) make provision for each element to be 32-bit aligned. For
example, if a structure contains achar data type (8 bits), 24 bits should be padded to it to make it
32-bit aligned.

2The functions which provide the actual implementation of the upcalls.

4.4 Functional Verification of OR1200 Core 74

Golden Model Synchronization

When the ISS starts the execution it fetches the first instruction through an upcall function (upr)
from the reset address (0x0000_0100). It executes the instruction in zero time and comes up again
to fetch the next instruction. As the ISS is running forever in a SystemC thread, it will never give the
control to any other process if there is no mechanism to blockit. We implemented a SystemC FIFO
based mechanism with blocking READ/WRITE to synchronize the system. Four FIFOs of a single
element depth were implemented between the hooked-up member functions and theimported DPI
functions. With this strategy, when the ISS upcalls to fetch a new instruction it writes the PC address
to the pc-fifo and is blocked until the instruction is available in the read-fifo. If this instruction is
a Store, the ISS makes an upcall to write data up and it is blocked until the write-fifo is empty.
However, if this instruction is a Load, the ISS upcalls to read data and it is blocked until data is
present in the read-fifo3. After completing the execution of an instruction the ISS upcalls to write
its status up and it is blocked until the status-fifo is empty.When the ISS is blocked the control is
transferred to other running processes. On the other ends ofthese FIFOs the test bench uses the
imported DPI functions to feed the instructions and data to the ISS to read data and addresses (for
the Store instructions) and to get the status of the ISS afterthe execution of every instruction.

Golden Model Architecture

Figure [4.4] shows the architecture of thegolden model. The ISS accesses the wrapper functions
through its upcalls. The communication between the ISS and the test bench is synchronized by
means of SystemC FIFOs. Test bench implemented in SystemVerilog (OVM) accesses these FIFOs
through theimported DPI functions.

�
�
�������

�
�

�
�����������	
����

�����������	
����

�����������	
��	

������

 ��!����

"#��$

����	
����

�����	
����

�����	
��	������

������

����

�������
���������

�������
���������

%�����&

������

������
���������

�������
�����������

�������	

��������	

%�����&

������

��������������

	

�
�����������
�'����

�%��(
�����)
���
��������	
��

���

Figure 4.4Golden model for the verification of the OR1200 core.

How to Compile SystemC Wrapper under Questasim 6.5

To compile the SystemC module we need to include directorieswhich contain (i) header files of
the Or1ksim library, (ii) the SystemC library and (iii) the TLM 2.0 library (if used) [23,27]. The op-
tion “-DMTI_BIND_SC_MEMBER_FUNCTION” is necessary when compiling a SystemC source file

3The read-fifo is used to fetch new instructions plus to read data for the Load instructions.

4.5 Verification Environment for OR1200 Core 75

which uses“SC_DPI_REGISTER_CPP_MEMBER_FUNCTION” to register its member functions as
DPI functions (Section4.4.3). The option“-DSC_INCLUDE_DYNAMIC_PROCESSES” is essential
if the TLM 2.0 is used in the model. An example piece of code forcompiling a SystemC module
(or1k_sc_module_dpi) under Questasim is given below. The directoriessysc_modelsand include
contain SystemC library and header files of the Or1ksim library respectively.

sccom −vv −I . . / . . / sc_go lden_model_or1200 / sysc_models /
−I . . / . . / sc_go lden_model_or1200 / or1ks im−0 . 3 . 0 / i n s t a l l / i n c l u d e
−DSC_INCLUDE_DYNAMIC_PROCESSES−g −DMTI_BIND_SC_MEMBER_FUNCTION
. . / . . / sc_go lden_model_or1200 / sysc_models /or1k_sc_module_dp i. cpp

The SystemC library must be included in the final linking. Thelinker needs to be directed to
find the shared objects needed to compile the Or1ksim libraryby using these linker’s options:
(-Wl, --R, $OR1KSIM_HOME), as shown below.

sccom −vv −L . . / . . / sc_go lden_model_or1200 / or1ks im−0 . 3 . 0 / i n s t a l l / l i b −Wl,−R,
. . / . . / sc_go lden_model_or1200 / or1ks im−0 . 3 . 0 / i n s t a l l / l i b − l s im − l i n k

4.4.4 SystemVerilog Wrapper around OR1200 Core

A SystemVerilog based wrapper was implemented around the OR1200 core (DUV) which includes
three SystemVerilog interfaces named as: (i) theinsn-if, (ii) the data-if and (iii) thestatus-if. These
are used to access the instruction Wishbone interface, dataWishbone interface and the internal
signals of the core respectively. The status-if of this wrapper makes all required internal signals of
the OR1200 available at its ports. The internal signals include the status registers (to be monitored)
and the control signals (to control the monitoring). The status registers include (i) some important
SPRs, (ii) all GPRs and (iii) the program counter (PC). This wrapper also implements a translation
block to translate the OR1200’s internal signals to a usableform e.g., the GPRs are implemented as a
dual-port synchronous memory and their translation to thirty two 32-bit registers is needed. Further,
this wrapper also implements a control block to manipulate the internal control signals according to
the requirements e.g., delay a control signal for two clock cycles. All components of the verification
environment interact with the DUV only through the wrapper’s interfaces. The architecture of this
wrapper is shown in Figure [4.5].

4.5 Verification Environment for OR1200 Core

4.5.1 Description

We used the OVM to implement a reconfigurable and reusable verification environment for the
simulation based verificationof the OR1200 core. We did aconstrained random generationof
the verification scenarios. We implemented a vibrant coverage model and a scoreboard to assess
the verification completeness. Figure [4.6] elaborates the architecture of a verification environment
(or1200_tb_top) which was developed by applying OVM and wasused for the functional verifica-
tion of the OR1200 core. This verification environment includes

4.5 Verification Environment for OR1200 Core 76

�
�
�
�
�
��
�
��

�
�
�
��
�
�
�
��

��
�
�
�
��

�
��
��
�
�
��

�
�
��
�
��

������

��
�!

�����

��
�!

����������

����������

 ���������

��

���#������

"*	+$

Figure 4.5SystemVerlog wrapper around the OR1200 core.

• the golden model,

• the DUV wrapper (or1200_wrapper),

• the main test bench component (or1200_tb),

• the global package (sv_sc_package) and

• the test library (or1200_tb_test_example_inst).

The golden model and the DUV wrapper have been described in the previous sections. The
rest of the components will be described in this section. Themain test bench (main TB) is a re-
configurable and reusable component which was developed by following OVM. It interacts with the
golden model through itsimported DPI functions and uses its physical interfaces to interact with the
DUV wrapper. The main TB executes the configurable tests of the test library where all tests are
constrained random generation of the scenarios which are comprised of OR1200 instructions. The
main TB first sends an instruction to the golden model, writes/reads data (if the instruction is Load
or a Store) and receives the ISS status once the instruction has been executed. Further, it sends this
instruction to the DUV. While this instruction passes through different pipeline stages in the DUV
the main TB keeps eye on the state of the DUV and reacts accordingly. It examines the control
state machine of the DUV along with the data-path. The main TBmonitors the control signals of
the DUV to determine the right time to examine the status of the DUV (e.g., PC, SPRs, etc.) and
the execution results (GPRs). It compares the status of the golden model with the DUV status and
scoreboards it. The main TB also implements a coverage modelto assess the completeness of the
verification. Most of the components of the verification environment can be configured according
to implementation’s requirements. For example, (i) the coverage model or the scoreboard should be
implemented or not, (ii) an agent component will operate as apassive component, and (iii) which
tests of the test library will be executed.

All components of this verification environment are described in the following subsections.

4.5 Verification Environment for OR1200 Core 77

��
�
��

�
�
��
�
�	

�

�
�
�

����
�����

�
�
�
�
�
��

�
��

�
�
�
��

��
�
��

��������������
����
�����

���������������������������

����������
����	����
���
��������
���

�����������	�

���

�������
���

�������
�

������������	

�
�

��������
�

�� !���
��

���������"���

���������

�������
�

��������
�

������������	�
�

����������
�

#
�����$
���
��%����&�'�������

����	���
�������

��������
���

��
�
��

�
�

�
�
�

����

�
���
�

����

�
������

��
���

����

��
���
���

����
������

����������

����
������

�	���
���
�

����
������

����������

����������	��

���(������

��
��

�
��

��
�
�	

��
��

�
�
��

�
��

�����

�
�������

�����

�
�������

	���	����	�

	��

	������������
�����

������'����
�����

������'����
�&�

����	�

���"����

) ��*

����
�����

�����
�����

�����
�&�
����	�

�����	�

����

������	����������

������	����������

+�����!

������

�����	����������

������	������	�����

+�����!

������

�
�������������%����

�+��

&������������(����

�
	�����

��
��

�
��

��
�
�	

��
��

�
�
��

�
��

������

��
�"

�����

��
�"

����������

����������

����� �&����

)�
,*

��� ���

Figure 4.6Verification environment for the OR1200 core.

4.5 Verification Environment for OR1200 Core 78

4.5.2 Main Test Bench for OR1200 Core

Figure [4.7] shows the structural design of the main TB used for the functional verification of the
OR1200 core. It is comprised of three main components:

• the interface verification component (ivc_or1200),

• the system/module verification component (svc_or1200) and

• the virtual sequencer (or1200_virtual_sequencer).

All components inside the main TB interact with each other through standard TLM interfaces.

��
��
�
�
+
%
�
��

�
+
%
�
��

�
�
��
�
�
+
%
�
��

����	��

�
��������

�
��

�����

�
�������

��
��

����
�����

����
�������	���
���
�

�����
���
�

������
�����������

����	���
�����������

������
�����������

�
�
�	
�
��
��

�
��
��
(
�
�

��

�
��
	
�
��
��
�
�

�
�

��
�
��
��
�
�
��
�
�

�
�

�
�
�	
�
��
�
��
�
�

�
�

���������

��
������

���������

��
������	�

���������

��
������

��������

������������

��������

����	�

�
�
�	
�
��
�
�
�
�

��

�
�
�
�
��
�
�
�
�
�
�
�

��

�
��
	
�
��
�
�
�
�
�

�
�

��
�
��
��
�
�
�
�
�
�
�

��

�
�
�	
�
��
�
��
��
�

�
�

��
�
��
��
�
�
�
��
�
�
�

��

�
��
	
�
��
��
�
�
�
�

�
�

�
�
�
�
�
��
�
�
��
�
�
�
�

�
�

�
�
�
�
�
��
�
�
��
�
�
�

��

�
�
�
�
�
��
�
�
��

�
�
�
�
�
(
�
�

�
�

�

�
��
�
�
��
�
�
�
��
�
��
�

�
�
�
�
�

�
�
�
�
�
�

�

�
��
��

�

�
�
�
�
�
�

�

�
�
�
��

�

�
�
�
�
�
�

�

�
��
�
�

�
�
�
��
�

�

��
�
�

�
�
�
��
�

�

�
��
�

�
�
�
�
�
�

�

�
�
��
��
�
�
�
�
��
�

�

�
�
�
�
�
�

�

��
���
������

������
���
���

�����
�������

�
���

�
���
���������

����
�����

����	���
�

��(������

�
��

����������	��

���(������

�����

�
�������

��
��

����
������

����������

�����

�
���
�

�����

������

�����

��(�����

����
������

����������

�����

�
���
�

�����

������

�����

��(�����

����
�������������(����������

����
�������������(����������

����������	�����(��������

����	���
�

��(���������

���������

��
�
��
�
�

�
�
�

��
�
��
�
�
��
�
�	
�

�
�
�

��������
���

Figure 4.7Main Test bench for the verification of the OR1200 core.

Interface Verification Component (IVC)

The main TB interacts with the DUV (OR1200) through its interface verification component. This
IVC includes (i) three physical interfaces (instruction, status, data), (ii) an instruction agent, (iii)
a data agent and (iv) a bus monitor. The instruction, status and data interfaces of the IVC are
respectively connected to the instruction, status and datainterfaces of the DUV wrapper. The other
side of the instruction, status and data interface is respectively connected to the instruction agent, the
bus monitor and the data agent of the IVC. The instruction interface is used to send the instructions

4.5 Verification Environment for OR1200 Core 79

to the DUV. The status interface is used to read the internal status registers and the control signals
of the DUV. The data interface is used to send or receive data of Load or Store accesses from the
DUV. Figure [4.8] shows a detailed view of this IVC.

ivc_or1200_env

ivc_or1200_data
_agent

ivc_or1200_bus_monitor

ivc_or1200_insn
_agent

seq_item_port

ivc_or1200_data
_driver

ivc_or1200_data
_sequencer

seq_item_export

ivc_or1200_data
_monitor

item_collected_port
data_collected_port

status_collected_por t
status_collected_port

insn_collected_por t

data_collected_por t

sequence
library

seq_item_port

ivc_or1200_insn
_driver

ivc_or1200_insn
_sequencer

seq_item_export

ivc_or1200_insn
_monitor

item_collected_port
insn_collected_port

sequence
library

iv
c_

or
12

00
_i

ns
n_

ph
y_

if
iv

c_
or

12
00

_s
ta

tu
s_

ph
y_

if
iv

c_
or

12
00

_d
at

a_
ph

y_
if

Figure 4.8 Interface verification component.

Physical Interfaces
These interfaces provide the port-level connection to the DUV interfaces and the helper func-

tions for the IVC to read or write the values on these ports. These interfaces implement the Wish-
bone protocol checking usingconcurrent assertionse.g., theack and theerr signals must not be
asserted together. Theseconcurrent assertionsare checked throughout the simulation to ensure that
the interconnection protocol is always obeyed.

Instruction Agent
This instruction agent contains (i) an instruction driver,(ii) an instruction monitor and (iii)

an instruction sequencer. It operates as a Slave component which is connected to the instruction
Wishbone interface of the OR1200. On receiving a request from the core, its instruction driver
requests a new transaction (instruction) from the instruction sequencer and sends it to the DUV
over the instruction interface (ivc_or1200_insn_phy_if) by using its helper functions. These
transactions are required to be translated to the port levelsignals. The instruction driver follows the
Wishbone interconnection standard. It synchronously asserts the termination signal (i.e., ack, err,
rty) for one clock cycle after each request from the DUV. The instruction monitor only reads (does

4.5 Verification Environment for OR1200 Core 80

not drive) the signals of the instruction interface when theinstruction driver acknowledges a request.
After reading the interface signals by using helper functions, this instruction monitor translates them
to an instruction transaction and sends this transaction tothesystem verification component, over a
TLM port (insn_collected_port). An instruction transaction encloses the instruction that is sent
to the DUV and the address of this instruction. The instruction driver requests a new instruction from
the instruction sequencer. It sends the next transaction (instruction) in the sequence to the driver.
These sequences are a constrained random generation of ORBIS32 instructions. The instruction
sequencer contains a library which encloses several sequences of instructions those can be generated
on demand.

Data Agent
The data agent contains (i) a data driver, (ii) a data monitorand (iii) a data sequencer. It oper-

ates as a Slave component which is connected to the data Wishbone interface of the OR1200. On re-
ceiving a READ request from the DUV, its data driver requestsa new transaction (a data item) from
the data sequencer and sends it to the DUV over the data interface (ivc_or1200_data_phy_if) by
using its helper functions. These transactions are required to be translated to the port level signals.
The data driver follows the Wishbone standard. It asserts the synchronous termination signal (ack,
err, rty) for READ requests while asserting asynchronous termination signal for WRITE requests.
These termination signals are asserted for one clock cycle.The data monitor only reads (does not
drive) the signals of the data interface when the data driveracknowledges a request. After reading
the interface signals, it translates them to a data transaction and sends this transaction to the system
verification component over a TLM port (data_collected_port). This data transaction encloses
the address and the data item along with the write enable (we_i) and the byte select (sel_i) Wishbone
signals. On the data driver’s request, the data sequencer sends a new transaction (a data item) to the
driver. The data sequencer contains a library which encloses several data sequences.

Bus Monitor
The bus monitor is used to access the internal control signals and the status registers of the

DUV through the status interface of the IVC. It can also access the instruction and data inter-
faces. This bus monitor reads the OR1200 status signals every cycle, translates them to a sta-
tus transaction and sends the transaction to the system verification component over a TLM port
(status_collected_port). This status transaction is comprised of (i) the PC register, (ii) the SR,
(iii) the ESR, (iii) the EPCR, (iv) the EEAR, (v) all GPRs and (vi) some important control signals
of the OR1200 e.g., pc_we, esr_we, except_start, etc.

System Verification Component (SVC)

The focus of the system verification component is to test the end-to-end behavior of the OR1200
core. This SVC is one step higher at abstraction level than the IVC. It is comprised of the following
components:

• the module monitor (mvc_monitor),

• the scoreboard (mvc_scoreboard) and

• the coverage model (mvc_coverage_model).

These components are explained below.

4.5 Verification Environment for OR1200 Core 81

Module Monitor
This module monitor, shown in Figure [4.9], collects the transactions (instruction/data/sta-

tus) sent from the IVC. It interacts with the golden model to read its status and data along with
the store address (in case of Stores). It accesses the goldenmodel by accessing the DPI functions
(sv_writeStatusUp, sv_writeUp) through the local SystemVerilog tasks (sv_readstatusUp_t,
sv_readUp_t) respectively. The golden model executes every instruction in zero time while the
OR1200 is a 5-stage pipeline processor. Therefore, a synchronization mechanism must be imple-
mented to correctly compare their status and results. This mechanism was implemented in the
module monitor using SystemVerilog FIFOs where the depth ofeach FIFO is four elements. The
module monitor receives information from the golden model and stores it into the corresponding
FIFO (e.g., SR to SR-fifo, PC to PC-fifo). The main test bench keeps on sending the instructions to
the ISS first and then to the DUV. The module monitor keeps on filling its FIFOs by receiving the
status and results from the ISS. These FIFOs are full by the time the first instruction executes on
the DUV (in the execution pipeline stage). The module monitor takes the status information of the
ISS from the top of the FIFOs, parses out the status of the DUV from the transactions (status/data)
received from the IVC and sends both information to the scoreboard. The control block (ctrl)
implements an interactive control logic to monitor the control state machine of the DUV and react
accordingly to decide the right time of comparison between the ISS and the DUV statistics. This
control block also sends a few control signals (e.g., except_start) to thevirtual sequencerwhich are
needed for the reactive scenario generation.

�����
���
�

�
	
��

�
��
��

�
�
�
��

�
��

�
�
��

�

&

�
�
��

�
�
�
�
�
��
�
�
��
�

�������������
�

�
�
�	

�
��

��

��

�
�
�(

�
�

�
�

�
�
�
�
��

��
�
��

�
��

��
(
�
�

��

�
�
�	

�
��

�
�
�
�
�

�
�

�
�
�
�
�
��
�
�
�
�
�
�
�

�
�

�
��

	
�
��

��
�
�

�
�

��
�
��

��
�
�
��

�
�

�
�

�
�
�	

�
��
�
��

�
�

�
�

�
�
�
�
�
��
�
�
��

�
�
�

��

�
�
�	

�
��

�
�
�
��

�

��

�
�
�
�
�
��
�
�
��

�
�
�
�

�
�

�
�
�	

�
��

�
��

��
�

�
�

�
�
�
�
��

��
�
��

�
�
�
�

�
�

�
�
�	

�
��

�
�
�
�

�
�

�
�
�
�
��
�
�
�
�
��

�

��

������
�����������

����	���
�����������

������
�����������

���������

��
������

���������

��
������	�

���������

��
������

����������

����������������

�
��������

�
������

��

�����������
 �
������

���

������������
 �
������

����

������������
 �
������

����

�����������
 �
������

���

����������

�������

����

�������

�����

�������

�����

�������

����

�������

���

��������

������������

��������

����	�

����������

��������

�
������

����������

�	������

��������

�	������	��

������������

 ����&

�
-��&�.�

&
���
�!�������

����������

�
-�#���.�&
���
�!�������

�
-�//0��.�&
���
�!�������

�
-�/�&��.�&
���
�!�������

�
-�/���.�&
���
�!�������

�
-����.�&
���
�!�������

&
���
���������

&
�������

�
������
�
�	�����������
�

��
��

�
�
�
��

��
�
�

�

����%�
��������
�

�
�
�
�
%
�

�
�
��
�
�
�
�

�

Figure 4.9Module monitor.

4.5 Verification Environment for OR1200 Core 82

To collect the verification coverage the module monitor sends the instructions those are exe-
cuted on the golden model and on the OR1200 core to an implemented coverage model. Addition-
ally, it sends a few status flags of the OR1200 core which are essential for a satisfactory coverage
collection. These flags include (i) thecarry flag, (ii) the overflow flagand (iii) the conditional
branch flag.

Scoreboard
The scoreboard receives the status registers and data alongwith the address (for Stores)

from the module monitor through standard TLM ports. It receives the status of the golden model
(expected_*_port) and the status of the DUV (actual_*_port). It implements an individual
comparator for each stakeholder in the status and data transactions e.g., PC, SR, address to store
data, etc. After comparison the scoreboarding is executed to generate the final report for each stake-
holder.

Coverage Model
To assess the verification closure, a coverage model was implemented to determine that the

DUV has been exposed to a satisfactory variety of stimulis. We created a database of“SystemVerilog
coverage points” to generate a histogram of instructions those have been executed on the ISS and on
the DUV. This coverage model creates a database on the bases of the following key features.

• The total number of instructions being executed on the ISS.

• The total number of instructions being executed on the DUV.

• The type of instructions being executed on the ISS.

• The type of instructions being executed on the DUV.

• Verify that every instruction reads or writes to all its legal operand e.g., (i) ADD uses all 32
GPRs as source1, source2 and destination. (ii) A Jump instruction takes all legal immediate
values.

• Verify that each instruction which can modify the status flags (carry, overflow, and branch
flag) properly sets and clears the corresponding flags. For example, ADD correctly sets and
resets the carry and overflow flags.

• The coverage of 32-bit address space through the OR1200’s program counter (PC) register.

• Thecross coverage of three consecutive instructions in the OR1200 pipeline toobserve the
dependencies between the instructions.

Virtual Sequencer

The verification environment contains a virtual sequencer to synchronize the timing and data be-
tween (i) the golden model (ISS), (ii) the instruction interface and (iii) the data interface. The
instruction sequencer generates sequences of instructions. The data sequencer generates sequences
of data. There is no co-ordination between these sequencers. This co-ordination is necessary to
control the sequence generation on the instruction and datainterfaces. Moreover, we need to send

4.5 Verification Environment for OR1200 Core 83

the instruction and data transactions to the golden model first and then to the OR1200 core (DUV).
Therefore, a controlling body must be implemented at a higher level to allow the fine control of
the verification environment for a particular test. The virtual sequencer contains the instances of
the instruction sequencer and the data sequencer along witha virtual sequence library. This library
encloses the virtual sequences which are executed on the virtual sequencer and control the coor-
dination between the instruction sequencer, the data sequencer and the golden model. The virtual
sequences are a constrained random generation of the scenarios (a sequence of instruction types e.g.,
ADD, MUL, etc.). When the OR1200 sends an instruction fetch request the virtual sequencer picks
the next instruction in the sequence (e.g., ADD) and generates its constrained random transaction
(binary code of ADD instruction e.g., 0xe0841800). The transaction is generated on the instruc-
tion sequencer by using the local sequence library of the instruction sequencer. Before sending this
transaction to the instruction driver the virtual sequencer first sends it to the golden model. If this
instruction is a Load, the virtual sequencer also provides arandomized data to the golden model.
The golden model finishes execution and sends the status and result back to the module monitor.
After this the virtual sequencer allows the instruction sequencer to send this instruction’s transaction
to the instruction driver. If the instruction is a Load, the virtual sequencer uses the same data sent
to the golden model and generates a constrained data transaction on the data sequencer by using its
local sequence library (data sequence library). When this instruction is executed on the DUV and
sends a READ request, this data transaction is sent to the data driver. The virtual sequencer also
implements a complex mechanism to offer interactive behavior by using control signals of the DUV
received from the module monitor. One instance of this mechanism is to stop sending instructions
to the golden model (sending instructions to the DUV never stops) if an exception has been signaled
in the OR1200 pipeline. It is because the OR1200 instructionpipeline is flushed and following
instructions will never be executed. Whereas, the golden model (ISS) executes instructions at once
in zero simulation time as we feed it instruction before sending to the OR1200 core (DUV).

Chapter 5
Results

5.1 Introduction

This chapter summarizes the results obtained from the simulation of the CPU Subsystem. It
presents the functional verification results of the memory system and the Sub-bus system. Further,
this chapter presents the verification results of the OR1200core obtained by applying the verifica-
tion environment developed for the functional verificationof the OR1200 core (see Section4.4).
These results can be divided into three categories, as givenbelow.

1. Errors: All errors found in the OR1200 core.

2. Discrepancies: All found discrepancies between the OR1200 core and its instruction set
simulator (used as a golden model).

3. Coverage results: The verification coverage results achieved from the functional verification
of the OR1200 core.

5.2 CPU Subsystem Simulations Results

5.2.1 Overview

After interconnecting all components of the Subsystem, we run a test program on it to see its basic
functional correctness. For this purpose, the memory initialization file (IHex) of the test program is
first generated using the OR1200 Tool chain and then loaded into the ROM of the CPU Subsystem.
The Subsystem is required to execute this binary encoded filecorrectly. The test program is also
executed on the OR1200 ISS to get execution results (given below) for cross-testing.

Test program’s execution result on the ISS =0x0037_5F00.

The used test program is given in Appendix (A.1.1). Additionally, a copy of its disassembly
file is given in Appendix (A.1.2). Some important execution results of the application program are
presented in the following subsection.

84

5.2 CPU Subsystem Simulations Results 85

5.2.2 Execution Results

The following are the most important aspects while executing an application program on the Sub-
system.

1. The Subsystem should fetch correct instructions from correct addresses inside the ROM.

2. The Subsystem should calculate the correct execution result and store it back to the memory.

Correct Instruction Fetch

After receiving the reset signal, the CPU Subsystem should fetch the first instruction correctly
from its reset address (0x0000_0100) inside the ROM. Figure[5.1] shows a waveform of the
OR1200 instruction interface (Wishbone) that fetches instructions from the ROM and feeds them to
the CPU. In this waveform the reset signal is de-asserted at time 100 ns. The OR1200 sends its first
READ request by asserting theiwb_cyc_o and iwb_stb_o signals at time 115 ns from the address
0x0000_0100. It gets the instruction 0x1820_F000 back (at time 125 ns) that is stored inside the
ROM at the address 0x0000_0100 (see Section2.14). This instruction (l.movhi = 0x1820_F000)
is the first instruction in the disassembly of the test program (see AppendixA.1.2). The OR1200
core then keeps on fetching and executing new instructions correctly.

OR1200_insn_if(WB)

00000000 1820f000 ...00000000 a8210450 ...00000000 1860f000 ...00000000

00000000 00000100 00000104 00000108 00...

0 f

00000000

100 ns 120 ns 140 ns 160 ns 180 ns 200 ns

OR1200_insn_if(WB)

/iwb_clk_i

/iwb_rst_i

/iwb_ack_i

/iwb_err_i

/iwb_rty_i

/iwb_dat_i 00000000 1820f000 ...00000000 a8210450 ...00000000 1860f000 ...00000000

/iwb_cyc_o

/iwb_stb_o

/iwb_adr_o 00000000 00000100 00000104 00000108 00...

/iwb_we_o

/iwb_sel_o 0 f

/iwb_dat_o 00000000

125 ns

Figure 5.1CPU Subsystem’s correct instruction fetch.

Correct Execution Result

Figure [5.2] shows the waveform of the instruction and data interfaces of the OR1200 core. At
time 17765 ns a “load word zero” instruction (l.lwz = 0x8482_FFF4) is fed into the processor.
At time 17795 ns a “store word” instruction (l.sw = 0xD7E2_27FC) is fed into the processor. At
time 17815 ns the instructionl.lwz loads the calculated result (0x0037_5F00) of the test program
from the stack (over the data interface). At time 17845 ns theinstructionl.sw stores the result to
the memory (over the data interface). The stored result is0x0037_5F00which is the correct result
calculated from the ISS.

5.2 CPU Subsystem Simulations Results 86

The waveform also confirms our use of synchronous termination (ack, err, rty) for READ trans-
fers and asynchronous termination for WRITE transfers. This is the solution to get the maximum
throughput when using the Wishbone standard (see Section2.3.3).

OR1200_insn_if(WB)

8482fff4 ...0000... d7e227fc ...0000... 07ffff95 ...0000... 1...

000003a8 000003ac 000003b0 000003b4

f

00000000

OR1200_data_if(WB)

00000000 00375f00 ...00000000

f00003b4 f0000444 f000044c

0 f 0 f

00040004 00375f00 00f4fff4 00375f00

17760 ns 17780 ns 17800 ns 17820 ns 17840 ns

OR1200_insn_if(WB)

/iwb_clk_i

/iwb_rst_i

/iwb_ack_i

/iwb_err_i

/iwb_rty_i

/iwb_dat_i 8482fff4 ...0000... d7e227fc ...0000... 07ffff95 ...0000... 1...

/iwb_cyc_o

/iwb_stb_o

/iwb_adr_o 000003a8 000003ac 000003b0 000003b4

/iwb_we_o

/iwb_sel_o f

/iwb_dat_o 00000000

OR1200_data_if(WB)

/dwb_clk_i

/dwb_rst_i

/dwb_ack_i

/dwb_err_i

/dwb_rty_i

/dwb_dat_i 00000000 00375f00 ...00000000

/dwb_cyc_o

/dwb_stb_o

/dwb_adr_o f00003b4 f0000444 f000044c

/dwb_we_o

/dwb_sel_o 0 f 0 f

/dwb_dat_o 00040004 00375f00 00f4fff4 00375f00

17815 ns
17795 ns

17765 ns
17805 ns

17845 ns

30 ns 10 ns
10 ns 30 ns

Figure 5.2CPU Subsystem’s execution result.

5.2.3 Maximum Throughput Results

As discussed in Section (2.7), the maximum achievable throughput of the CPU Subsystem isthree
clock cycles per instruction. Figure [5.3] shows a waveform of the instruction interface of the
OR1200 core. It confirms that most of the instructions are fedinto the core after every three clock
cycles (i.e., 30 ns). However, the LOAD/STORE instructionsneed more time to execute on the CPU
Subsystem. The LOAD instructions take five clock cycles (i.e., 50 ns) because of the synchronous
termination and STORE instructions take four clock cycles (i.e., 40 ns) because of the asynchronous
termination.

5.3 Memory System Verification Results 87

OR1200_insn_if(WB)

0000...0...0...

0000... 00... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0000... 0... 0... 0... 0... 0... 00... 0... 0000... 0... ...

f 0 f

00000000

100 ns 200 ns 300 ns 400 ns 500 ns 600 ns 700 ns 800 ns

OR1200_insn_if(WB)

/iwb_clk_i

/iwb_rst_i

/iwb_ack_i

/iwb_err_i

/iwb_rty_i

/iwb_dat_i 0000...0...0...

/iwb_cyc_o

/iwb_stb_o

/iwb_adr_o 0000... 00... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0... 0000... 0... 0... 0... 0... 0... 00... 0... 0000... 0... ...

/iwb_we_o

/iwb_sel_o f 0 f

/iwb_dat_o 00000000

225 ns
255 ns

525 ns
575 ns

755 ns
795 ns

30 ns
270 ns

50 ns
180 ns

40 ns

Figure 5.3CPU Subsystem’s maximum throughput results.

5.3 Memory System Verification Results

5.3.1 Overview

The memory system of the CPU Subsystem includes a ROM and a RAMmemory with Wishbone
interfaces (see Section4.2). The ROM is implemented by using a RAM inside and both memories
use the same Wishbone interface. Hence, only the verification of the RAM is adequate. However, we
separately verified the ROM initialization with an Intel Hexfile (see Section2.4.3). The simulation
results of the RAM verification are presented in this section.

5.3.2 RAM Verification Results

We discussed the verification plan and the test bench used forthe functional verification of the
RAM in Section (4.2). Figure [5.4] presents the successful completion of all tests designed for the
verification of the RAM component.

Sequential Single WRITE/READ Access Test Result

This test was designed to sequentially cover the complete address space of the RAM. It first writes
a data value to an address, then reads from the same address and finally compares both data val-
ues (see Section4.2.1). Figure [5.5] shows that the test bench asserts a WRITE request (at time
26290 ns) to the RAM with a randomly generated data (0x7B30_911F) and a sequential address
(0x0000_020D). As all WRITE accesses get an asynchronous termination, this transfer finishes in
the same clock cycle. Then the test bench asserts a READ request (at time 26310 ns) to the RAM
from the same address used in the previous WRITE transfer (0x0000_020D). As all READ ac-
cesses get a synchronous termination, data is available to the test bench one clock cycle later (at
time 26320 ns). Then the test bench compares both data values(written and read). As this test is
passed, the next WRITE request is sent to the RAM (at time 26340 ns) with the next sequential

5.3 Memory System Verification Results 88

Figure 5.4Tests’ execution of the functional verification of RAM.

address (0x0000_020E) and a new random data value. The test covers the complete address space
of the RAM.

7B30911F DFD0A0BD

F F F F

0000020D 0000020D 0000020E 0000020E

5E25C304 7B30911F 5E25C304 DFD0A0BD

26280 ns 26300 ns 26320 ns 26340 ns 26360 ns

/RAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i 7B30911F DFD0A0BD

/RAMTestbed/u_ram/ram_we_i

/RAMTestbed/u_ram/ram_sel_i F F F F

/RAMTestbed/u_ram/ram_adr_i 0000020D 0000020D 0000020E 0000020E

/RAMTestbed/u_ram/ram_cyc_i

/RAMTestbed/u_ram/ram_stb_i

/RAMTestbed/u_ram/ram_dat_o 5E25C304 7B30911F 5E25C304 DFD0A0BD

/RAMTestbed/u_ram/ram_ack_o

/RAMTestbed/u_ram/ram_err_o

/RAMTestbed/u_ram/ram_rty_o

Figure 5.5Sequential single WRITE/READ access result.

Random Single WRITE/READ Access Test Result

This test was designed to randomly cover the address space ofthe RAM. It first writes a data
value to a random address, then reads from the same address and finally compares both data val-
ues (see Section4.2.1). Figure [5.6] shows that the test bench asserts a WRITE request (at time
877490 ns) to the RAM with a random generated address (0x44DC_BB76) and a random data
value (0x081B_E479). As all WRITE accesses get an asynchronous termination, this transfer fin-
ishes in the same clock cycle. Then the test bench asserts a READ request (at time 877510 ns)
to the RAM from the same address used in the previous WRITE transfer (0x44DC_BB76). As all

5.3 Memory System Verification Results 89

READ accesses get a synchronous termination, data is available to the test bench one clock cycle
later (at time 877520 ns). The test bench compares both data values (written and read). As this test
is passed, the next WRITE request is sent to the RAM (at time 877540 ns) with new random address
(0xE8AA_CE1C). This test was repeated 228 times to get an exhaustive verification completeness.

081BE479 6DDED2FA

F F F F

44DCBB76 44DCBB76 E8AACE1C E8AACE1C

5E25C304 081BE479 5E25C304 6DDED2FA

877480 ns 877500 ns 877520 ns 877540 ns 877560 ns

/RAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i 081BE479 6DDED2FA

/RAMTestbed/u_ram/ram_we_i

/RAMTestbed/u_ram/ram_sel_i F F F F

/RAMTestbed/u_ram/ram_adr_i 44DCBB76 44DCBB76 E8AACE1C E8AACE1C

/RAMTestbed/u_ram/ram_cyc_i

/RAMTestbed/u_ram/ram_stb_i

/RAMTestbed/u_ram/ram_dat_o 5E25C304 081BE479 5E25C304 6DDED2FA

/RAMTestbed/u_ram/ram_ack_o

/RAMTestbed/u_ram/ram_err_o

/RAMTestbed/u_ram/ram_rty_o

Figure 5.6Random single WRITE/READ access result.

Random Block WRITE/READ Access Test Result

In this test, the test bench sends a block WRITE request to theRAM with randomly generated
arrays of addresses and data. Then the test bench sends a block READ request for the same ad-
dresses. The received data array is then compared with the written data array (see Section4.2.1).
If the test passes, the next block WRITE request is sent to theRAM with new randomly generated
arrays of addresses and data. Figure [5.7] shows a block WRITE request. Figure [5.8] shows a
block READ request corresponding to the previous block WRITE transfer. The length of the blocks
is randomly generated. It is important to note that by using our approach (all WRITE accesses get
an asynchronous termination and all READ accesses get a synchronous termination) a WRITE ac-
cess of eight blocks length takes exactly eight clock cyclesto finish. It was taking nine clock cycles
by using the“advanced synchronous cycle termination” approach [4]. However, a READ access of
eight blocks length still takes 16 clock cycles because of the synchronous termination limitations.
For an exhaustive verification coverage this test was repeated 220 times with random block lengths.

EFEFD0F4 9F3B5C41 901D7CBE 2FF22442 9E7A93C6 D28DEDC5 EB9123E4 33FFBDEE

F

15D20BC8 15D20BCC 15D20BD0 15D20BD4 15D20BD8 15D20BDC 15D20BE0 15D20BE4

922380 ns 922400 ns 922420 ns 922440 ns

/RAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i EFEFD0F4 9F3B5C41 901D7CBE 2FF22442 9E7A93C6 D28DEDC5 EB9123E4 33FFBDEE

/RAMTestbed/u_ram/ram_we_i

/RAMTestbed/u_ram/ram_sel_i F

/RAMTestbed/u_ram/ram_adr_i 15D20BC8 15D20BCC 15D20BD0 15D20BD4 15D20BD8 15D20BDC 15D20BE0 15D20BE4

/RAMTestbed/u_ram/ram_cyc_i

/RAMTestbed/u_ram/ram_stb_i

/RAMTestbed/u_ram/ram_dat_o

/RAMTestbed/u_ram/ram_ack_o

/RAMTestbed/u_ram/ram_err_o

/RAMTestbed/u_ram/ram_rty_o

Figure 5.7Random block WRITE access result.

5.4 Sub-Bus System Verification Results 90

F

15D20BC8 15D20BCC 15D20BD0 15D20BD4 15D20BD8

5E25C304 EFEFD0F4 9F3B5C41 901D7CBE 2FF22442 ...

922460 ns 922480 ns 922500 ns 922520 ns 922540 ns

/RAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i

/RAMTestbed/u_ram/ram_we_i

/RAMTestbed/u_ram/ram_sel_i F

/RAMTestbed/u_ram/ram_adr_i 15D20BC8 15D20BCC 15D20BD0 15D20BD4 15D20BD8

/RAMTestbed/u_ram/ram_cyc_i

/RAMTestbed/u_ram/ram_stb_i

/RAMTestbed/u_ram/ram_dat_o 5E25C304 EFEFD0F4 9F3B5C41 901D7CBE 2FF22442 ...

/RAMTestbed/u_ram/ram_ack_o

/RAMTestbed/u_ram/ram_err_o

/RAMTestbed/u_ram/ram_rty_o

Figure 5.8Random block READ access result.

5.4 Sub-Bus System Verification Results

5.4.1 Overview

We did a constrained random verification of the Sub-bus system. A detailed verification plan and
the test bench used for the functional verification of the triple-layer Sub-bus system is discussed in
Section (4.3). In this section we present the results and the achieved verification coverage of the
Sub-bus system.

5.4.2 Tests Stimuli Execution

As we have discussed in Section (2.5), the Sub-bus system has three Master interfaces and four
Slave interfaces. The Sub-bus system applies a priority based arbitration where each Master in-
terface has a fixed priority. The “Main-bus Master interface(mbus_if)” has the highest priority
and the “instruction interface (insn_if)” has the lowest priority. We have connected three BFMs to
three Master interfaces for the functional verification of the Sub-bus system. The BFMs emulate
the behavior of Master components having Wishbone interface. Figure [4.3] shows the used test
bench. Master-1 is the BFM-1 which is connected to the instruction interface (insn_if) of the Sub-
bus system. Master-2 is the BFM-2 connected to the data interface (data_if) of the Sub-bus system.
Master-3 is the BFM-3 connected to the Main-bus Master interface (mbus_if) of the Sub-bus sys-
tem. Hence, Master-3 is the highest priority Master component while Master-1 is the lowest priority
Master component. Four RAM components are connected to fourSlave interfaces of the Sub-bus
system.

Figure [5.9] shows that each Master component executes the test stimulidesigned for the verifi-
cation of the RAM component (see Section4.3). Since it is a priority based Bus system, a higher pri-
ority Master finishes its tests before lower priority Masters. Master-3 blocks Master-2 and Master-1.
Master-2 blocks Master1. Master-1 finishes last. A higher priority Master blocks the lower priority
Master if they access the same Slave component.

5.4.3 Sub-Bus Verification Coverage Results

Figure [5.10] presents the address coverage of all Master components within each Slave compo-
nent and the address coverage of each Slave component accessed by each Master component. This

5.4 Sub-Bus System Verification Results 91

Figure 5.9Tests’ execution of the functional verification of Sub-bus system.

coverage model was implemented to clearly see the verification completeness of the Sub-bus system
by means of addresses accesses (see Section4.3).

Example The address coverage of the instruction Master depicts thatit has accessed the ROM
component 51570 times, the RAM component 52374 times, the SBUS component 51630 times and
the SCPU component 51962 times. The address coverage of the Slave components verifies the
access of the instruction Master.

We have achieved 100% functional verification coverage of the Sub-bus system by means of
addresses (each address was accessed).

5.4 Sub-Bus System Verification Results 92

Figure 5.10Sub-bus verification coverage results.

5.5 OpenRISC1200 Error Reports 93

5.5 OpenRISC1200 Error Reports

5.5.1 Overview

This section presents all errors and faults we find in the OR1200 core. A detailed report is given
for every fault.

5.5.2 Extend Half Word with Sign (l.exths) Instruction

The instructionl.exths belongs to the ORBIS32-II instruction class of the OpenRISC1000 ar-
chitecture. The following instructions belong to the family of thel.exths.

• Extend Byte with Sign (l.extbs)

• Extend Byte with Zero (l.extbz)

• Extend Half Word with Sign (l.exths)

• Extend Half Word with Zero (l.exthz)

The same inconsistency is found between the OR1200 core and the ISS for all these instructions.
These instructions are properly implemented and correctlyworking in the ISS but the OR1200 core
does not contain their implementations. This report is for the instructionl.exths only, though it is
applicable to other mentioned instructions.

Description

The execution result of the instructionl.exths is placed into GPR rD. In execution, bit 15 of GPR
rA is placed into the higher-order 16 bits of GPR rD. The low-order 16 bits of rA are copied into
low-order 16 bits of rD. The bit encoding of the instructionl.exths is given below. More details
can be found in the OpenRISC1000 architecturemanual[11].

l.exths
31 26 25 . . . 21 20 . . . 16 15 10 9 . . 6 5 4 3 . . 0

Opcode 0x38 D A Reserved Opcode 0x0 Reserved Opcode 0xc
6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4 bits

ISS Implementation ofl.exths

The ISS implementation of the instructionl.exths works correctly. The ISS status and the results
after the execution of an instructionl.exths (0xe2fe_000c) on the ISS are given in Figure [5.11].
The results show that bit 15 of register rA (GPR[30]) is correctly placed into the higher-order 16
bits of register rD (GPR[23]). The low-order 16 bits of register rA are also correctly copied into the
low-order 16 bits of register rD.

http://www.opencores.org/openrisc,architecture

5.5 OpenRISC1200 Error Reports 94

Figure 5.11Execution results ofl.exths on the ISS.

OR1200 Implementation ofl.exths

It is mentioned above that the instructionl.exths and its other family instructions are not im-
plemented in the OR1200 core. However, it would be interesting to know what happens if this
instruction is executed on the OR1200 core. Perhaps this instruction would provide correct results
on the ISS. Some pieces of the OR1200 implementation, interesting for the instructionl.exths,
are given below.

Thel.exths is an ALU instruction. The signalalu_op (in the code) contains the ALU opcode
which is the last four bits of an ALU instruction. Hence, in the instruction decode (id_insn) stage,
an instructionl.exths sets thealu_op = 0xC (froml.exths bit encoding).

/ * ******** o r 1 2 0 0 _ c t r l . v******** * /
/ / Decode o f a lu_op

always @(posedge c l k or posedge r s t) begin
i f (r s t)

a lu_op <= #1 ‘OR1200_ALUOP_NOP;
e l s e i f (! e x _ f r e e z e & i d _ f r e e z e | f l u s h p i p e)

a lu_op <= #1 ‘OR1200_ALUOP_NOP;
e l s e i f (! e x _ f r e e z e) begin

case (i d _ i n s n [3 1 : 2 6]) / / s ynopsys p a r a l l e l _ c a s e
/ / ALU i n s t r u c t i o n s e x c e p t t h e one w i th immedia te
‘OR1200_OR32_ALU:

a lu_op <= #1 i d _ i n s n [3 : 0] ;

The l.exths is an ALU instruction but noALU opcode is defined for this instruction in the
OR1200 implementation, as given below. However, an ALU opcode (OR1200_ALUOP_MOVHI)
for another instruction is defined with the same value (4’d12= 0xC) as for the instructionl.exths
(from l.exths bit encoding).

/ * ****** o r 1 2 0 0 _ d e f i n e s . v***** * /
‘ d e f i n e OR1200_ALUOP_MOVHI 4 ’ d12

As discussed above, the instructionl.exths sets thealu_op to 0xC, which is an opcode of the
instructionl.movhi. Therefore, the instructionl.exths actually results in the execution of another
instruction i.e.,l.movhi. The instructionl.exths does not set themacrc_op flag in the instruction

5.5 OpenRISC1200 Error Reports 95

decode (ID) stage. Hence, in the execution stage (EX) operand ‘b’ is shifted left by 16 bits in
the OR1200_ALUOP_MOVHI implementation (given below). Thebit encoding of the instruction
l.movhi is different. If the instruction isl.movhi, the 16-bit immediate value is zero-extended,
shifted left by 16 bits and placed into a GPR rD.

/ * ***** 0 r1200_a lu . v***** * /
‘OR1200_ALUOP_MOVHI : begin

i f (macrc_op) begin
r e s u l t = m u l t_m ac_re su l t ;

end
e l s e begin

r e s u l t = b << 16 ;
end

end

Simulation Results ofl.exths

Figure [5.13] shows the simulation waveform of the OR1200 core. It shows that the instruction
l.exths (0xe2fe_000c) is in the execution stage (ex_insn) at time 375 ns, wherealu_op = 0xC,
macrc_op = 0x0, operand a = 0x0000_4ca2 and operand b = 0x0000_0000. The execution result of
the instructionl.movhi is 0x0000_0000, asmacrc_op = 0x0.

After the execution of the instructionl.exths on the OR1200 core, the ISS status was compared
with the DUV results and a mismatch was found as shown in Figure [5.12].

Figure 5.12Results mismatch ofl.exths from the OR1200 core and the ISS.

Conclusion

The instructionl.exths and its other family instructions are implemented and working correctly
in the ISS. Whereas, these instructions are not implementedin the OR1200 core. It is very important
to notice that the execution of these instructions in the OR1200 core actually executes the instruc-
tion l.movhi, as discussed above. This is an implementation fault in the OR1200 core because

5.5 OpenRISC1200 Error Reports 96

if an unimplemented instruction executes on the processor,it should generate an illegal exception.
However, whenl.exths is executed the OR1200 executes the instructionl.movhi instead of gen-
erating an exception. Hence, incorrect execution results are calculated without knowing that an
unimplemented instruction has been executed on the processor.

In the presence of this error, we can not include the instruction l.exths and its other family
instructions in the main verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
sign/zero extended instructions. This means that the compiler does not either implement these
instructions or often generate them. This is the reason why this error stayed unidentified before.
However, the OR32 assembler could assemble code that uses these instructions.

Figure 5.13Simulation results ofl.exths on the OR1200 core.

9
7

5.5 OpenRISC1200 Error Reports 98

5.5.3 Add Signed and Carry (l.addc) Instruction

The content of GPR rA and GPR rB are added with the carry flag (SR[CY]). The result is then
placed into GPR rD.

l.addc
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0

Opcode 0x38 D A B Reserved Opcode 0x0 Reserved Opcode 0x1
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

Problem Discussion

Different scenarios need to be discussed to understand the problem with the instructionl.addc.

(A) First of all, we need to know how the instructionl.addc is implemented in the OR1200 core.
Following piece of code shows the implementation of the instructionsl.add andl.addc in
the OR1200 ALU.

/ * ***** or1200_a lu . v***** * /

ass ign {cy_sum , r e s u l t _ s u m } = a + b ;
‘ i f d e f OR1200_IMPL_ADDC
ass ign {cy_csum , r e s u l t _ c s u m } = a + b + {32 ’ d0 , c a r r y } ;
‘ e n d i f

(B) We also need to know how theresult is generated in the ALU for the write-back stage. The
following piece of code generates thisresult (only the cases corresponding to the instructions
l.add andl.addc are taken). It should be noted that the sensitivity list of thealways block
does not containresult_csum (l.addc result from (A)).

/ * ***** or1200_a lu . v***** * /

always @(alu_op or a or b or r e s u l t _ s u m or r e s u l t _ a n d or macrc_op or
s h i f t e d _ r o t a t e d or m ul t_m ac_r e su l t) begin

‘ i f d e f OR1200_CASE_DEFAULT
casex (a lu_op) / / s ynopsys p a r a l l e l _ c a s e
‘ e l s e
casex (a lu_op) / / s ynopsys f u l l _ c a s e p a r a l l e l _ c a s e
‘ e n d i f
‘OR1200_ALUOP_ADD : begin

r e s u l t = r e s u l t _ s u m ;
end
‘ i f d e f OR1200_IMPL_ADDC
‘OR1200_ALUOP_ADDC : begin

r e s u l t = r e s u l t _ c s u m ;
end
‘ e n d i f

end

(C) Next we need to know is how the carry flag is generated (in the ALU) from thecy_sum and the
cy_csum signals (from (A)). The piece of code (given below) shows that a combinatorial logic
generates the carry flag (cyforw) and a write enable signal (cy_we) for the supervision register
(SR).

5.5 OpenRISC1200 Error Reports 99

/ * ***** or1200_a lu . v***** * /

always @(alu_op or cy_sum
‘ i f d e f OR1200_IMPL_ADDC
or cy_csum
‘ e n d i f

) begin
casex (a lu_op) / / s ynopsys p a r a l l e l _ c a s e

‘ i f d e f OR1200_IMPL_CY
‘OR1200_ALUOP_ADD : begin

cyforw = cy_sum ;
cy_we = 1 ’ b1 ;

end
‘ i f d e f OR1200_IMPL_ADDC
‘OR1200_ALUOP_ADDC: begin

cyforw = cy_csum ;
cy_we = 1 ’ b1 ;
end
‘ e n d i f
‘ e n d i f

d e f a u l t : begin
cyforw = 1 ’ b0 ;
cy_we = 1 ’ b0 ;

end
endcase

end

(D) Further, we need to know how thecarry bit is updated in the SR. The following piece of code
gives this detail. The carry flag (cyforw) and the write enable signal (cy_we) from (C) first
updates the carry bit into_sr that further updates the SR register. It is very important tonote
that the freeze logic is not considered when updating the SR and also thecarry flag.

/ * ***** o r1200_sp rs . v***** * /

/ /
/ / Wr i te e n a b l e s f o r SR
/ /

ass ign sr_we = (w r i t e _ s p r && s r _ s e l) | (b ranch_op == ‘OR1200_BRANCHOP_RFE) |
f lag_we | cy_we ;

/ /
/ / S u p e r v i s i o n r e g i s t e r
/ /

always @(posedge c l k or posedge r s t)
i f (r s t)

s r <= #1 {1 ’ b1 , ‘OR1200_SR_EPH_DEF , {‘OR1200_SR_WIDTH−3{1 ’b0 } } , 1 ’ b1 } ;
e l s e i f (e x c e p t _ s t a r t e d)begin

s r [‘OR1200_SR_SM] <= #1 1 ’ b1 ;
s r [‘OR1200_SR_TEE] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_IEE] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_DME] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_IME] <= #1 1 ’ b0 ;

end
e l s e i f (sr_we)

s r <= #1 t o _ s r [‘OR1200_SR_WIDTH−1 :0] ;

/ * I t i s c l e a r t h a t SR i s updated from TO_SR , and then we need to know how
TO_SR i s be ing updated .* /

ass ign t o _ s r [‘OR1200_SR_CY] =

5.5 OpenRISC1200 Error Reports 100

(b ranch_op == ‘OR1200_BRANCHOP_RFE) ? e s r [‘OR1200_SR_CY] :
cy_we ? cyforw : (w r i t e _ s p r && s r _ s e l) ? s p r _ d a t _ o [‘OR1200_SR_CY] :
s r [‘OR1200_SR_CY] ;

(E) The next thing we need to understand is how the inputcarry flag is generated for thel.addc
instruction. The following code shows that thecarry flag is combinatorially generated from the
SR register’s carry bit.

/ * ***** o r1200_sp rs . v***** * /
/ /
/ / Carry a l i a s
/ /
ass ign c a r r y = s r [‘OR1200_SR_CY] ;

(F) Further, it is interesting to see how the write enable signal for the register file is generated in
the OR1200 core. The code given below shows that the registerfile write enable signal (rf_we)
is controlled by the freeze logic for the write-back pipeline stage (wb_freeze). The register file
can be written only when the write-back stage is not frozen i.e., the signalwb_freeze is low.
Note that we are not considering the register file write enable from the SPRS but only from the
CPU control.

/ * ***** o r1200_r f . v***** * /
/ /
/ / RF w r i t e enab le i s e i t h e r from SPRS or normal from CPU c o n t ro l
/ /
always @(posedge r s t or posedge c l k)

i f (r s t)
r f _we_a l low <= #1 1 ’ b1 ;

e l s e i f (~ wb_f reeze)
r f _we_a l low <= #1 ~ f l u s h p i p e ;

ass ign r f_we = ((s p r _ v a l i d & s p r _ w r i t e) | (we & ~ wb_f reeze)) & r f_we_a l low & supv |
(| r f_addrw)) ;

Errors with Instruction l.addc

As we have established a good understanding of thel.addc implementation in the OR1200, we
now discuss the found errors with this instruction.

Error in the OR1200 core

This result indicates an implementation error we found in the OR1200 ALU. It can be seen in
the waveform (Figure [5.16]) that an instructionl.addi (0x9d72_a73f) is in the execution stage
(ex_insn) at time 975075 ns. The destination register for this instruction is rD[11], register operand
one is rA[18] (0x0eeb_4c9e) and the immediate value is 0xffff_a73f. The (carry) flag is zero at
the time of execution of this instruction (at time 975075 ns). The execution results of thel.addi
implementation in (A) and (B) are given below:

5.5 OpenRISC1200 Error Reports 101

At t ime = 975075 ns .
cy_sum = 1
r e s u l t _ s u m = 0 x0eea_f3dd
cy_csum = 1
r e s u l t _ c s u m = 0 x0eea_f3dd (The ‘ c a r r y ’ i snot upda ted y e t .)
c a r r y = 0
r e s u l t = 0 x0eea_f3dd

As t h e c a r r y f l a g i s r e g i s t e r e d in t h e SR (in (D)) , i t i s upda ted one c lock
c y c l e l a t e r . Hence , a tt ime = 975085 ns .

c a r r y = 1
cy_csum = 1
r e s u l t _ c s u m = 0 x0eea_f3de

The carry flag is first updated into_sr (in (D)) in the same clock cycle (at time 975075 ns) and
then in the registerSR in the next clock cycle (at time 975085 ns). It means that thecarry flag
coming from (D) into the ALU (in (A)) is updated in the next clock cycle.

The next instruction executed (ex_insn) on the OR1200 core isl.addc (0xe399_7001) at time
975105 ns. The destination register is rD[28], register operand one is rA[25] (0x4d7b_f415) and
register operand two is rB[14] (0x0674_0760). Thecarry flag is set by the time of execution of this
instruction (at time 975105 ns). The results after the execution of this instruction are given below.

At t ime = 975105 ns .
cy_sum = 0
r e s u l t _ s u m = 0 x53e f fb75
cy_csum = 0
r e s u l t _ c s u m = 0 x53e f fb76 (The ‘ c a r r y ’ i snot upda ted y e t .)
r e s u l t = 0 x53e f fb76

S ince t h e c a r r y f l a g i s upda ted one c lock c y c l e l a t e r (i n (D)).
Hence , a t t ime = 975115 ns .

cy_sum = 0
r e s u l t _ s u m = 0 x53e f fb75
cy_csum = 0
r e s u l t _ c s u m = 0 x53e f fb75
r e s u l t = 0 x53e f fb76

It should be noted that once the carry flag is updated (at time 975115 ns), theresult_csum is
changed in this execution. As it is not included in the sensitivity list of the always block in (B), it
does not effect theresult. Hence, a correct result (0x53ef_fb76) is stored into the destination register
rD[28] at time 975135 ns. It takes several cycles to write theregister file because the write enable
signal (rf_we) is controlled by the write-back freeze logic (wb_freeze) as described in (F).

The next instruction executed (ex_insn) on the DUV is againl.addc (0xe299_7001) at time
975135 ns. The destination register is rD[20], register operand one is rA[25] (0x4d7b_f415) and
register operand two is rB[14] (0x0674_0760). Thecarry flag is zero by the time of execution of
this instruction (at time 975135 ns). The results after the execution of this instruction are as follow.

cy_sum = 0
r e s u l t _ s u m = 0 x53e f fb75
cy_csum = 0
r e s u l t _ c s u m = 0 x53e f fb75
r e s u l t = 0 x53e f fb76

5.5 OpenRISC1200 Error Reports 102

Note that the only difference between the current instruction (0xe299_7001) and the previous
instruction (0xe399_7001) is the destination operand (previous = rD[28] and current = rD[20]).
The rest of the bits in both instructions are exactly the same. In the ALU implementation (in (B))
the destination operand is not included in the sensitivity list of thealways block. Therefore, the
result can not take the new calculated value ofresult_csum. Consequently, the destination register
gets a wrong value (0x53ef_fb76) at time 975165 ns. Figure [5.14] shows a mismatch between the
OR1200 core and its golden model (ISS) because of this wrong value. This means that the temporal
result must be included in the sensitivity list of thealways block (in (B)).

Figure 5.14Results mismatch ofl.addc from the OR1200 and the ISS.

Error in the ISS

Besides the errors in the OR1200 core we find that the ISS also has a problem with the carry
flag implementation. This scenario is discussed here. The ISS implementation of the instruction
l.addc is given below.

/ * ***** execgen . c***** * /

case 0x1 :
/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 3 0 f and c u r r e n t mask f c 00 0 0 0 f d i f f e r − do

f i n a l check * /
i f ((i n s n & 0 x fc00030 f) == 0xe0000001) {

/ * I n s t r u c t i o n : l . addc * /
{

u o r r e g _ t a , b , c ;
/ * Number o f operands : 3* /
a = (i n s n >> 21) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
b = (i n s n >> 16) & 0 x1f ;
d e f i n e PARAM1 c p u _ s t a t e . reg [b]
c = (i n s n >> 11) & 0 x1f ;
d e f i n e PARAM2 c p u _ s t a t e . reg [c]
{ / * " l_addc " * /

o r r e g _ t temp1 , temp2 , temp3 ;
i n t 8 _ t temp4 ;
temp2 = (o r r e g _ t)PARAM2;

5.5 OpenRISC1200 Error Reports 103

temp3 = (o r r e g _ t)PARAM1;
temp1 = temp2 + temp3 ;
i f (c p u _ s t a t e . s p r s [SPR_SR] & SPR_SR_CY)

temp1 ++;
SET_PARAM0(temp1) ;
SET_OV_FLAG_FN (temp1) ;
i f (ARITH_SET_FLAG) {

i f (! temp1)
c p u _ s t a t e . s p r s [SPR_SR] | = SPR_SR_F ;

e l s e
c p u _ s t a t e . s p r s [SPR_SR] &= ~SPR_SR_F ;

}
i f ((u o r r e g _ t) temp1 < (u o r r e g _ t) temp2)

c p u _ s t a t e . s p r s [SPR_SR] | = SPR_SR_CY ;
e l s e

c p u _ s t a t e . s p r s [SPR_SR] &= ~SPR_SR_CY ;

temp4 = temp1 ;
i f (temp4 == temp1)

o r1k_m s ta t s . by teadd ++;
}
undef SET_PARAM
undef PARAM0
undef PARAM1
undef PARAM2

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 177; / * " l . addc " * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
} e l s e { / * I n v a l i d i n s n * /

{
l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
}
break ;

In this scenario, the first instruction sent to the ISS isl.addc (0xe149_2801) with the des-
tination register rD[10], the register operand one rA[9] (0xffff_ffff) and the register operand two
rB[5] (0x0000_d3db). After the execution of this instruction the destination register gets the result
(0x0000_d3da) and the carry flag (CY) is set. The execution results and status registers of the ISS
are as given below.

L_ADDC = 0 xe1492801 : rD [1 0] = 0 x0000d3da : rA [9] = 0 x f f f f f f ff : rB [5] = 0 x0000d3db
SR == 0 x00008401 : EPCR == 0 x0000068c : EEAR == 0 x f f f f c 3 9 3 : ESR == 0x00008401
F == 0 : CY == 1 : OV == 0 # PC == 0x00000650

The next instruction sent to the ISS is againl.addc (0xe349_7801) with the destination register
rD[26], the register operand one rA[9] (0xffff_ffff) and the register operand two rB[15] (0xffff_ffff).
By considering the ISS implementation of the instructionl.addc (given above) there are following

5.5 OpenRISC1200 Error Reports 104

results.

temp2 = 0 x f f f f f f f f
temp3 = 0 x f f f f f f f f
temp1 = 0 x f f f f f f f e

However, a correct value oftemp1 is 0x1_ffff_fffe but since it is a 32-bit register it only con-
tains 32 bits (0xffff_fffe). Since the carry flag is set (CY = 1), the value oftemp1 is incremented
(0xffffffff). Moreover, the values intemp1 andtemp2 are equal. Hence, the carry bit in the super-
vision register (SR) is cleared. So the value in the SR is incorrect because a correct result of this
execution leads to a set carry bit. The mismatch between the SR of the ISS and the OR1200 is
shown in Figure [5.15].

Figure 5.15Results mismatch ofl.addc from the OR1200 core and the ISS.

Conclusion

The instructionl.addc implementation in the OR1200 core was found to be erroneous because
it does not include the result of the instruction in the sensitivity list of the always block (in (B)).
Moreover, it is very important to note that the carry flag in the OR1200 core is not controlled by
the freeze logic, whereas the update of the destination register is controlled. It leads to an update
of carry in (A) before the result is stored and a wrong carry could be added. A synthesis tool will
automatically add the temporal result to the sensitivity list of thealways block with a warning.
However, the implementation will still not work because thecarry flag is not controlled by the freeze
logic.

Further, the ISS implementation to update the carry flag is same for all instructions (as for
l.addc). This implementation has a problem and generates an incorrect result. It means that all
instructions (e.g.,l.add, l.addi, l.addic etc.) with this implementation to update the carry flag
in the ISS may lead to a wrong carry. When this carry is added the calculation result goes wrong.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.addc. This means that the compiler does not either implement thisinstruction or

5.5 OpenRISC1200 Error Reports 105

often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Consequently, the instructionl.addc is excluded from the main verification test of the OR1200
core.

Figure 5.16Simulation results ofl.addc on the OR1200 core.

1
0

6

5.5 OpenRISC1200 Error Reports 107

5.5.4 Divide Signed (l.div) Instruction

The content of GPR rA is divided by the content of GPR rB. The result is then placed into GPR
rD. Both rA and rB are treated as signed operands. If the divisor is zero the carry flag (SR[CY]) is
set.

l.div
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0

Opcode 0x38 D A B Reserved Opcode 0x3 Reserved Opcode 0x9
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

ISS implementation ofl.div

The ISS implementation of the instructionl.div is given below. It shows if a divisor (temp3) is
zero then the instruction is going to generate an illegal exception. Whereas from the instruction’s
description (given above), it is required to set the carry flag.

/ * ***** execgen . c***** * /

i f ((i n s n & 0 x fc00030 f) == 0 xe0000309) {
/ * I n s t r u c t i o n : l . d i v * /
{

u o r r e g _ t a , b , c ;
/ * Number o f operands : 3* /
a = (i n s n >> 21) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
b = (i n s n >> 16) & 0 x1f ;
d e f i n e PARAM1 c p u _ s t a t e . reg [b]
c = (i n s n >> 11) & 0 x1f ;
d e f i n e PARAM2 c p u _ s t a t e . reg [c]
{ / * " l _ d i v " * /

o r r e g _ t temp3 , temp2 , temp1 ;

temp3 = PARAM2;
temp2 = PARAM1;
i f (temp3)

temp1 = temp2 / temp3 ;
e l s e {

e x c e p t _ h a n d l e (EXCEPT_ILLEGAL, c p u _ s t a t e . pc) ;
re tu rn ;

}

Figure [5.17] shows the execution results of the instructionl.div (0xe133_5b09) executed
on the ISS. The divisor (rB[11]) is zero and the instruction generates an illegal exception (PC =
0x0000_0700) instead of setting the carry flag (CY).

OR1200 implementation ofl.div

The instructionsl.div andl.divu are optional to implement in the OR1200 core and take 32
clock cycles to execute. Both instructions do not drive the carry flag in the OR1200 core. Whereas
from their description, both instructions are required to set the carry flag if the divisor is zero.

5.5 OpenRISC1200 Error Reports 108

Figure 5.17Instructionl.div generates an illegal exception at the ISS.

Conclusion

A division by zero does not generate any compilation error bythe OR1200 C/C++ compiler. In the
ISS, the instructionsl.div andl.divu generate an illegal exception if a divisor is zero and there
is no effect on the carry flag. Whereas, in the OR1200 core, such instruction neither generates an
illegal exception nor sets the carry flag. This is a clear mismatch between the ISS implementation
and the OR1200 implementation of the instructionsl.div andl.divu. It should be also noted that
both instructions do not effect the carry flag when a divisor is zero (neither in the ISS nor in the
OR1200 core). This is a mismatch between the implementationof both instructions and their speci-
fication provided in the OpenRISC1000 architecturemanual[11]. Figure [5.18] shows a waveform
that clearly depicts this mismatch. At time 555 ns, the instruction l.div (0xe133_5b09) is in the
execution stage with operand one (a = 0x0000_0000) and operand two (b = 0x0000_0000). The
divisor is zero but the carry flag is not set. Additionally, the waveform confirms that the instruc-
tion l.div takes 32 clock cycles to execute. Consequently, the instructionsl.div andl.divu are
excluded from the main verification test of the OR1200 core.

http://www.opencores.org/openrisc,architecture

Figure 5.18Simulation results ofl.div on the OR1200 core.

1
0

9

5.5 OpenRISC1200 Error Reports 110

5.5.5 Find Last 1 (l.fl1) Instruction

Starting from the MSB, the position of the last ‘1’ bit in GPR rA is placed into a GPR rD. The
instruction checks for ‘1’ bit in rA and decrements the countfor every zero bit until the last ‘1’ bit
is found. If the last ‘1’ bit is found in the MSB, 32 is written into rD. If the last ‘1’ bit is found in
LSB, 1 is placed into rD. If no ‘1’ bit is found, zero is placed into rD.

l.fl1
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0

Opcode 0x38 D A B Reserved Opcode 0x1 Reserved Opcode 0xf
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

ISS implementation ofl.fl1

The ISS implementation of the instructionl.fl1 (given below) shows that it is an invalid instruc-
tion which is not implemented in the ISS so far. Whenever the instruction isl.fl1, the ISS is going
to generate the exception of an illegal instruction.

/ * ********* execgen . c********* * /

case 0x1 :
/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 3 0 f and c u r r e n t mask f c 00 0 3 0 f d i f f e r − do

f i n a l check * /
i f ((i n s n & 0 x fc00030 f) == 0 xe000010f) {

/ * I n s t r u c t i o n : l . f l 1 * /
{

u o r r e g _ t a , b ;
/ * Number o f operands : 2* /
a = (i n s n >> 21) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
b = (i n s n >> 16) & 0 x1f ;
d e f i n e PARAM1 c p u _ s t a t e . reg [b]
l _ i n v a l i d () ;
undef SET_PARAM
undef PARAM0
undef PARAM1

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 198; / * " l . f l 1 " * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
} e l s e {

/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
}
break ;

5.5 OpenRISC1200 Error Reports 111

Figure [5.19] shows the execution results of thel.fl1 instruction (0xe2ba_b10f) from the ISS.
Since it is an illegal instruction, it generated an illegal exception (PC = 0x0000_0700).

Figure 5.19Execution results ofl.fl1 on the ISS.

OR1200 implementation ofl.fl1

There is no implementation of the instructionl.fl1 in the OR1200 core. However, when we send
an instructionl.fl1 to the OR1200 core, another instruction is executed instead. This instruction
is “Find First 1” (l.ff1)1 and its implementation in the OR1200 core is given below.

/ * ****** o r 1 2 0 0 _ d e f i n e s . v****** * /
‘ d e f i n e OR1200_ALUOP_FF1 4 ’ d15

/ * ******* or1200_a lu . v******* * /
‘ i f d e f OR1200_CASE_DEFAULT

casex (a lu_op) / / s ynopsys p a r a l l e l _ c a s e
‘ e l s e

casex (a lu_op) / / s ynopsys f u l l _ c a s e p a r a l l e l _ c a s e
‘ e n d i f

‘OR1200_ALUOP_FF1 : begin
r e s u l t = a [0] ? 1 : a [1] ? 2 : a [2] ? 3 : a [3] ? 4 : a [4] ? 5 : a [5] ?
6 : a [6] ? 7 : a [7] ? 8 : a [8] ? 9 : a [9] ? 10 : a [1 0] ? 11 : a [1 1] ?
12 : a [1 2] ? 13 : a [1 3] ? 14 : a [1 4] ? 15 : a [1 5] ? 16 : a [1 6] ? 17 :
a [1 7] ? 18 : a [1 8] ? 19 : a [1 9] ? 20 : a [2 0] ? 21 : a [2 1] ? 22 : a [2 2]
? 23 : a [2 3] ? 24 : a [2 4] ? 25 : a [2 5] ? 26 : a [2 6] ? 27 : a [2 7] ? 28 :
a [2 8] ? 29 : a [2 9] ? 30 : a [3 0] ? 31 : a [3 1] ? 32 : 0 ;

end

Within the l.ff1 implementation,OR1200_ALUOP_FF1 is defined as 4’d15 (0xF) which is
actually an ALU opcode (alu_op). The ALU opcode is described by the last 4 bits of an ALU
instruction. The bit encoding of the instructionl.fl1 shows that the last four bits are same for both

1l.ff1: Starting from the LSB, the position of the first ’1’ bit in GPR rA is placed into GPR rD. This
instruction checks for ’1’ bit and increments the count for every zero bit. If the last ’1’ bit is found in the
MSB, 32 is written into rD. If the last ’1’ bit is found in the LSB, 1 is placed into rD. If no ’1’ bit is found,
zero is placed into rD.

5.5 OpenRISC1200 Error Reports 112

instructions i.e., 0xF. The only difference in the bit encoding of both instructions is in bits [9:8].
Hence, the implementation shown above executes for both instructions. This means that even if the
instructionl.fl1 is not implemented in the OR1200 core, it does not generate anillegal exception.
Moreover, it gives a wrong result since it finds the position of the first ’1’ instead of the last ’1’.

It can be seen from the waveform in Figure [5.20] that the instructionl.fl1 (0xe2ba_b10f) is
executed on the OR1200 core at time 315 ns. Register operand one is 0x0000_e9a3 and the ALU
opcode is 0xF (alu_op). The calculated result is 0x1 i.e., the first ’1’ is found in LSB. This is a
correct result for the instructionl.ff1 but an incorrect result for the instructionl.fl1. The correct
result for the instructionl.fl1 is 16 i.e., the last ’1’ bit in register operand one (0x0000_e9a3). It
means that even if the instructionl.fl1 is not implemented in the OR1200 core, the instruction
l.ff1 is executed instead.

Conclusion

The instructionl.fl1 is neither implemented in the ISS nor in the OR1200 core. However, when
this instruction is sent to the OR1200 core, the instructionl.ff1 is executed instead of generating
an illegal instruction exception. As a result, the execution of an unimplemented instruction is never
reported. Hence, the instructionl.fl1 is excluded from the main verification test of the OR1200
core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.ff1. This means that the compiler does not either implement thisinstruction or
often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Figure 5.20Simulation results ofl.fl1 on the OR1200 core.

1
1

3

5.5 OpenRISC1200 Error Reports 114

5.5.6 Multiply Immediate Signed and Accumulate (l.maci) Instruction

The content of GPR rA is multiplied with a sign extended immediate. The result is then truncated
to 32 bits and added to the registers MACHI and MACLO (MAC accumulator). All operands are
treated as signed integers.

l.maci
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0

Opcode 0x13 Immediate Reserved A Immediate
6 bits 5 bits 5 bits 5 bits 11 bits

ISS implementation ofl.maci

The l.maci implementation in the ISS (given below) shows that the operand ‘a’ (register rA) is
taken from bits [20:16] of an instruction (insn[20:16]). The bit encoding ofl.maci tells that bits
[20:16] are not used (reserved). This is a considerable discrepancy between the specifications of
l.maci and its implementation in the ISS.

/ * ********* execgen . c********* * /
case 0x13 :

/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 0 0 0 and c u r r e n t mask fc000000 d i f f e r − do f i n a l
check * /

i f ((i n s n & 0 xfc000000) == 0 x4c000000) {
/ * I n s t r u c t i o n : l . maci * /
{

u o r r e g _ t a , b ;
/ * Number o f operands : 2* /
a = (i n s n >> 16) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
b = (i n s n >> 0) & 0 x 7 f f ;
b | = ((i n s n >> 21) & 0 x1f) << 11 ;
i f (b & 0 x00008000) b | = 0 x f f f f 8 0 0 0 ;
d e f i n e PARAM1 b
{ / * " l_mac " * /

u o r r e g _ t lo , h i ;
LONGEST l ;
o r r e g _ t x , y ;

l o = c p u _ s t a t e . s p r s [SPR_MACLO] ;
h i = c p u _ s t a t e . s p r s [SPR_MACHI] ;
x = PARAM0;
y = PARAM1;

/ * PRINTF (" [%"PRIxREG" ,%"PRIxREG "] \ t " , x , y) ; * /
l = (ULONGEST) lo | ((LONGEST) h i << 32) ;
l += (LONGEST) x * (LONGEST) y ;

/ * Th is i m p l e m e n t a t i o n i s ve ry f a s t− i t needs on ly one c y c l e f o r mac . * /
l o = ((ULONGEST) l) & 0xFFFFFFFF ;
h i = ((LONGEST) l) >> 32 ;
c p u _ s t a t e . s p r s [SPR_MACLO] = lo ;
c p u _ s t a t e . s p r s [SPR_MACHI] = h i ;

/ * PRINTF ("(%" PRIxREG" ,%"PRIxREG " \ n " , h i , l o) ;* /
}
undef SET_PARAM
undef PARAM0
undef PARAM1

5.5 OpenRISC1200 Error Reports 115

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 106; / * " l . maci " * /
a n a l y s i s (c u r r e n t) ;

}
}

} e l s e {
/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
}

}
break ;

Figure [5.21] shows that the instructionl.maci (0x4cf3_10ef) is sent to the ISS. According to
the implementation of the instructionl.maci, operand one is rA[19] and the immediate value is
0x0000_38ef. The register rA is taken from bits [20:16] of the instruction and the 16-bit immediate
is taken from bits [25:21] and bits [10:0] (0x0000_38ef). However, according to the bit encoding
of the instructionl.maci, bits [20:16] are not used (reserved) and the register rA should have been
taken from bits [15:11] i.e., rA[2].

Figure 5.21Execution results ofl.maci on the ISS.

OR1200 implementation ofl.maci

The OR1200 implementation for the instructionl.maci is given below. It shows that the GPR
used in the execution of this instruction is taken from bits [20:16]. The immediate value is taken
from bits [15:0] of the instruction. The waveform in Figure [5.22] shows the execution of the
instructionl.maci (0x4cf3_10ef). At time 1155 ns, this instruction is in the instruction decode
stage (id_insn). The immediate value (simm), later used in the execution stage (at time 1185 ns), is
taken from the instruction’s bits [15:0] (0x0000_10ef). Note that the immediate value is not taken
according to the bit encoding of the instructionl.maci which specifies bits [25:21] and bits [10:0]
for the immediate value.

5.5 OpenRISC1200 Error Reports 116

/ * ***** o r 1 2 0 0 _ c t r l . v***** * /
/ /
/ / R e g i s t e r f i l e read a d d r e s s e s
/ /
ass ign r f _ a d d r a = i f _ i n s n [2 0 : 1 6] ;
ass ign r f _ a d d r b = i f _ i n s n [1 5 : 1 1] ;
ass ign r f _ r d a = i f _ i n s n [3 1] ;
ass ign r f _ r d b = i f _ i n s n [3 0] ;

/ /
/ / Decode o f imm_s ignex tend
/ /
always @(i d _ i n s n) begin

case (i d _ i n s n [3 1 : 2 6]) / / s ynopsys p a r a l l e l _ c a s e

/ / l . maci
‘ i f d e f OR1200_MAC_IMPLEMENTED

‘OR1200_OR32_MACI :
imm_s ignextend = 1 ’ b1 ;

‘ e n d i f

/ /
/ / S ign / Zero e x t e n s i o n o f immed ia tes
/ /
ass ign simm = (imm_s ignextend == 1 ’ b1) ? {{16{ i d _ i n s n [1 5] } } , i d _ in s n [1 5 : 0] } : { {16 ’ b0 } ,

i d _ i n s n [1 5 : 0] } ;

Conclusion

A very clear difference between thel.maci implementation in the ISS and the OR1200 core is
on the bit encoding of the immediate value. The ISS takes the immediate value from bits [25:21]
and bits [10:0] while the OR1200 core takes the immediate value from bits [15:0] of an instruction.
Despite that, GPR rA is taken from the instruction bits [20:16] in the ISS and the OR1200 core. This
is not according to the instruction’s bit encoding given in the OpenRISC1000 architecturemanual
where bits [15:11] are specified for GPR rA. In the presence ofthese differences, it is not possible
to include this instruction in the main verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.maci. This means that the compiler does not either implement thisinstruction or
often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

http://www.opencores.org/openrisc,architecture

Figure 5.22Simulation results ofl.maci on the OR1200 core.

1
1

7

5.5 OpenRISC1200 Error Reports 118

5.5.7 Multiply Immediate Signed (l.muli) Instruction

The content of GPR rA is multiplied with an immediate value. The result is then truncated to a
32-bit value and placed into GPR rD.

l.muli
31 26 25 . . . 21 20 . . . 16 15 0

Opcode 0x2c D A Immediate
6 bits 5 bits 5 bits 16 bits

Problem Discussion

The l.muli implementation in the ISS is working correctly. However, its implementation in
the OR1200 core has an error. The problem belongs to the freeze logic implementation for the
instruction. The instructionl.muli is a multicycle instruction but it is not controlled by the freeze
logic (for the number of execution cycles), as the OR1200 implementation shows below.

/ * ***** o r 1 2 0 0 _ d e f i n e s . v***** * /
/ / ALU i n s t r u c t i o n s m u l t i c y c l e f i e l d in machine word
‘ d e f i n e OR1200_ALUMCYC_POS 9:8

/ * ***** o r 1 2 0 0 _ c t r l . v***** * /
/ /
/ / Decode o f m u l t i c y c l e
/ /
always @(i d _ i n s n) begin

case (i d _ i n s n [3 1 : 2 6]) / / s ynopsys p a r a l l e l _ c a s e

/ / l . sb
‘OR1200_OR32_SB :

m u l t i c y c l e = ‘OR1200_TWO_CYCLES;

/ / ALU i n s t r u c t i o n s e x c e p t t h e one w i th immedia te
‘OR1200_OR32_ALU :

m u l t i c y c l e = i d _ i n s n [‘OR1200_ALUMCYC_POS] ;

/ *
ALU i n s t r u c t i o n s (l . add / l . mul e t c .) have op−code in b i t s { [3 1 : 2 6] , [9 : 8] , [3 : 0] } .
OR1200_ALUMCYC_POS i s b i t s [9 : 8] o f an i n s t r u c t i o n t h a t i s commonly 2 ’ b11 f o r
m u l t i c y c l e i n s t r u c t i o n s (e . g . , l . mul , l . d i v e t c .) and 2 ’ b00 f o r s i n g l e c y c l e
i n s t r u c t i o n s (e . g . , l . add , l . sub , l . or e t c .) .

* /

/ / S i n g l e c y c l e i n s t r u c t i o n s
d e f a u l t : begin

m u l t i c y c l e = ‘OR1200_ONE_CYCLE;
end

endcase
end

The multicycle signal shows the number of clock cycles that an instruction (in the ID-stage
(id_insn)) should take to complete its execution (in the EX-stage). The instructionl.muli basically
executes the implementation of the instructionl.mul in the OR1200 core. For multicycle instruc-
tions bits [9:8] (OR1200_ALUMCYC_POS) are explicitly specified as an opcode. This opcode is

5.5 OpenRISC1200 Error Reports 119

used to specify the number of cycles (multicycle signal) that an instruction takes in its execution.
But thel.muli instruction’s bits [9:8] are not explicitly specified as an opcode. The waveform in
Figure [5.24] shows an instructionl.muli (0xb266_13a7) in the instruction decode stage (id_insn)
at time 2815 ns. Even if it is a multicycle instruction, themulticycle signal is low. The instruction
l.muli takes three clock cycles to execute (executes asl.mul). Hence, its execution result is avail-
able after three clock cycles. Since the execution stage of the instructionl.muli is not controlled
by the freeze logic for multicycles and it is treated as a single cycle instruction, an incorrect result
(0x0e4c_51e4) is taken at time 2865 ns. For a multicycle instruction of three clock cycles a correct
result is calculated and available at time 2875 ns (mac_prod_r = 0x0101_efe0). Figure [5.23] shows
a mismatch between the ISS and the OR1200 core results after the execution of the samel.muli
instruction.

Figure 5.23Results mismatch ofl.muli from the OR1200 core and the ISS.

Conclusion

The instructionl.muli is not working correctly in the OR1200 core. It is a multicycle instruction
but not controlled by the freeze logic. Therefore, an incorrect result is selected because of an
incorrect selection time. Hence, it is not possible to include this instruction in the main verification
test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.muli. This means that the compiler does not either implement thisinstruction or
often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Figure 5.24Simulation results ofl.muli on the OR1200 core.

1
2

0

5.5 OpenRISC1200 Error Reports 121

5.5.8 Multiply Unsigned (l.mulu) Instruction

The content of GPR rA is multiplied by the content of GPR rB. The result is then truncated to 32
bits and placed into GPR rD. All operands are treated as signed integers.

l.mulu
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 8 7 . . 4 3 . . 0

Opcode 0x38 D A B Reserved Opcode 0x3 Reserved Opcode 0xb
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

Problem Discussion

The instructionl.mulu is neither implemented in the ISS nor in the OR1200 core. It belongs to
the ORBIS32-I instruction class of the OpenRISC1000 architecture and all instructions belonging
to this class are compulsory to implement [11]. The OR1200 core and the ISS both are supposed to
generate an illegal exception for any illegal or unimplemented instruction but the OR1200 core does
not generate an illegal exception in case of the instructionl.mulu. This means that the execution
of an illegal or unimplemented instruction is not reported.It is an implementation fault in the
OR1200 core where the instructionl.mulu is executed as an instruction that moves the content of
GPR rB to a destination register (rD). The fault can be seen within the OR1200 implementation
given below, which shows that0xb (OR1200_ALUOP_IMM = 4’d11) is an ALU opcode to move
an immediate value to a destination register. As the instruction l.mulu also contains the opcode
0xb in its last four bits, the implementation to move an immediate value to a GPR is executed
instead and generates a wrong result. Hence, the instruction l.mulu is not taken as an illegal or an
unimplemented instruction even though it is not implemented in the OR1200 core. The waveform
in Figure [5.25] shows that the instructionl.mulu (0xe147_930b) is in the execution stage at time
2845 ns. The destination register is rD[10], the register operand one is rA[7] (0x0000_d5f9) and
the register operand two is rB[18] (0x0000_62ab). When the instructionl.mulu is in the execution
stage, the ALU opcode (alu_op) is 0xb which is actually the last four bits of an ALU instruction
(insn[3:0]). Further, operand “/or1200_alu/b” (rB[18]) is first placed into theresult at time 2845 ns
and then stored into rD[10] (0x0000_62ab) at time 2885 ns. Despite that, neither anexcept_illegal
signal is reported nor the next program counter (PC) is an illegal exception vector (0x0000_0700).

/ * ****** o r 1 2 0 0 _ d e f i n e s . v**** * /
/ /
/ / ALUOPs
/ /
‘ d e f i n e OR1200_ALUOP_IMM 4 ’ d11

/ * ******** o r 1 2 0 0 _ c t r l . v****** * /
/ /
/ / Decode o f a lu_op
/ /
always @(posedge c l k or posedge r s t) begin

i f (r s t)
a lu_op <= #1 ‘OR1200_ALUOP_NOP;

e l s e i f (! e x _ f r e e z e & i d _ f r e e z e | f l u s h p i p e)
a lu_op <= #1 ‘OR1200_ALUOP_NOP;

e l s e i f (! e x _ f r e e z e) begin
case (i d _ i n s n [3 1 : 2 6]) / / s ynopsys p a r a l l e l _ c a s e

5.5 OpenRISC1200 Error Reports 122

/ / ALU i n s t r u c t i o n s e x c e p t t h e one w i th immedia te
‘OR1200_OR32_ALU:

a lu_op <= #1 i d _ i n s n [3 : 0] ;

/ * ****** or1200_a lu . v**** * /

/ /
/ / Cen t ra l p a r t o f t h e ALU
/ /

‘ i f d e f OR1200_CASE_DEFAULT
casex (a lu_op) / / s ynopsys p a r a l l e l _ c a s e

‘ e l s e
casex (a lu_op) / / s ynopsys f u l l _ c a s e p a r a l l e l _ c a s e

‘ e n d i f
‘OR1200_ALUOP_IMM : begin

r e s u l t = b ;
end

Conslusion

The instructionl.mulu is neither implemented in the ISS nor in the OR1200 core. It belongs to
the ORBIS32-I instruction class of the OpenRISC1000 architecture and all instructions belonging
to this class are compulsory to implement [11]. Despite that, the OR1200 core does not generate
an illegal exception but executes a wrong implementation instead of the instructionl.mulu. Hence,
this instruction cannot be included in the main verificationtest of the OR1200.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.mulu. This means that the compiler does not either implement thisinstruction or
often use it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Figure 5.25Simulation results ofl.mulu on the OR1200 core.

1
2

3

5.5 OpenRISC1200 Error Reports 124

5.5.9 Unimplemented Overflow Flag (OV)

The overflow flag is the 11th bit of the SR register (considering the initial index to be zero).
According to the OR1200 architectural manual a number of instructions (e.g.,l.add, l.sub, l.mul
etc.) can alter this flag. But if we look into the implementation of the OR1200 ALU and the SR
(given below), there is no implementation of the overflow flag.

/ * **** o r1200_de f i ne . v**** * /
‘ d e f i n e OR1200_SR_OV 11 / / Unused

/ * **** o r1200_sp rs . v***** * /
/ /
/ / What to w r i t e i n t o SR
/ /
ass ign t o _ s r [‘OR1200_SR_FO : ‘OR1200_SR_OV] =

(branch_op == ‘OR1200_BRANCHOP_RFE) ? e s r [‘OR1200_SR_FO: ‘OR1200_SR_OV] :
(w r i t e _ s p r && s r _ s e l) ? {1 ’ b1 , s p r _ d a t _ o [‘OR1200_SR_FO−1: ‘OR1200_SR_OV] } :
s r [‘OR1200_SR_FO : ‘OR1200_SR_OV] ;

/ /
/ / S u p e r v i s i o n r e g i s t e r
/ /
always @(posedge c l k or posedge r s t)

i f (r s t)
s r <= #1 {1 ’ b1 , ‘OR1200_SR_EPH_DEF , {‘OR1200_SR_WIDTH−3{1 ’b0 } } , 1 ’ b1 } ;

e l s e i f (e x c e p t _ s t a r t e d)begin
s r [‘OR1200_SR_SM] <= #1 1 ’ b1 ;
s r [‘OR1200_SR_TEE] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_IEE] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_DME] <= #1 1 ’ b0 ;
s r [‘OR1200_SR_IME] <= #1 1 ’ b0 ;

end
e l s e i f (sr_we)

s r <= #1 t o _ s r [‘OR1200_SR_WIDTH−1 :0] ;

/ * **** or1200_a lu . v***** * /
casex (a lu_op) / / s ynopsys p a r a l l e l _ c a s e

‘ e l s e
casex (a lu_op) / / s ynopsys f u l l _ c a s e p a r a l l e l _ c a s e

‘ e n d i f
‘OR1200_ALUOP_ADD : begin

r e s u l t = r e s u l t _ s u m ;
end

‘ i f d e f OR1200_IMPL_ADDC
‘OR1200_ALUOP_ADDC : begin

r e s u l t = r e s u l t _ c s u m ;
end

‘ e n d i f
‘OR1200_ALUOP_SUB : begin

r e s u l t = a− b ;
end

‘ i f d e f OR1200_MULT_IMPLEMENTED
‘ i f d e f OR1200_IMPL_DIV

‘OR1200_ALUOP_DIV ,
‘OR1200_ALUOP_DIVU ,

‘ e n d i f
‘OR1200_ALUOP_MUL : begin

r e s u l t = m u l t_m ac_re s u l t ;
end

‘ e n d i f

5.6 Discrepancies Between OR1200 and Golden Model 125

5.6 Discrepancies Between OR1200 and Golden Model

5.6.1 Overview

This section presents the acquired results corresponding to the discrepancies between the OR1200
core and its ISS. These discrepancies are as given below.

• An instruction is implemented in the OR1200 core but not in the ISS or vice versa.

• An instruction is implemented in the OR1200 core and in the ISS but its behavior is not the
same.

• An instruction is not working correctly in the ISS.

All found discrepancies between the DUV and the ISS are presented in the following subsec-
tions.

5.6.2 Jump Register and Link (l.jalr) and Jump Register (l.jr) In-
structions

The effective address for these jump instructions is the content of GPR rB. Both instructions have
a delay slot. The program unconditionally jumps to this effective address. In case of the instruction
l.jalr, the address of the instruction after the delay slot instruction is placed into the link register
(GPR 9). The link register is not allowed to be used as rB in theinstructionl.jalr.

l.jalr
31 26 25 16 15 . . . 11 10 0

Opcode 0x12 Reserved B Reserved
6 bits 10 bits 5 bits 11 bits

l.j r
31 26 25 16 15 . . . 11 10 0

Opcode 0x11 Reserved B Reserved
6 bits 10 bits 5 bits 11 bits

ISS implementation ofl.jalr and l.jr

The ISS implementation of both instructions is provided in Appendix (A.3). The implementation
does not include any exception handling if these instructions try to jump to an unaligned address.
Both instructions set thepc_delay (the address of the delay slot instruction) with the contentof GPR
rB. The instructionl.jalr additionally stores the address of the instruction after the delay slot
instruction in the link register (GPR 9).

The implementation of the upcall function (generic_read_word) is given below. This upcall
is used to fetch a new instruction or data (for Loads) from theaddress space of a generic device. The
implementation shows that whenever there is an unaligned word access to fetch a new instruction
or to load a new data word, this upcall gives an error on the standard output. Further, an unaligned

5.6 Discrepancies Between OR1200 and Golden Model 126

access forbids the call to theext_read() function (upcall to the public interface of the ISS to
read from an external peripheral). Hence, the upcall is never generated andgeneric_read_word
returns 0x0000_0000, which is taken by the ISS as the next instruction to execute. According to
the ORBIS32-I instruction class, 0x0000_0000 is a simple jump instruction (l.j) followed by a
delay slot. The PC address calculation for the next instruction (the delay slot instruction) is PC + 4.
Hence, the next PC is also an unaligned address.

/ * *********** g e n e r i c . c*********** * /

s t a t i c u i n t 3 2 _ t gener i c_ read_wor d (o r a d d r _ t addr ,vo id * d a t)
{

s t r u c t dev_gene r i c * dev = (s t r u c t dev_gener i c *) d a t ;

i f (! c o n f i g . e x t . c l a s s _ p t r)
{

f p r i n t f (s t d e r r , " F u l l word read from d i s a b l e d g e n e r i c dev ice \ n ") ;
re tu rn 0 ;

}
e l s e i f (addr >= dev−> s i z e)

{
f p r i n t f (s t d e r r , " F u l l word read ou t o f range f o r g e n e r i c device %s "

" (addr %" PRIxADDR ") \ n " , dev−>name , addr) ;
re tu rn 0 ;

}
e l s e i f (0 != (addr & 0x3))

{
f p r i n t f (s t d e r r ,

" Unal igned f u l l word read from 0x%" PRIxADDR " i g n o r e d \ n " ,
addr) ;

re tu rn 0 ;
}

e l s e
{

unsigned long wordaddr = (unsigned long i n t) (addr + dev−>baseaddr) ;
re tu rn (u i n t 3 2 _ t) htoml (e x t _ r e a d (wordaddr , 0 x f f f f f f f f)) ;

}
} / * gener i c_ read_word () * /

Note: The effective address (EA) for other jump instructions (e.g., l.bnf, l.jal etc.) is not
calculated from the content of any GPR. It is calculated froman immediate value which is shifted
right 2 bits (word aligned) before calculating an EA. Hence,these instructions always generate a
word aligned access.

Results

As seen in Figure [5.26], the instructionl.jalr (0x4855_261d) is sent to the ISS when re-
questing an instruction from address 0x2f32_7c50. The instruction uses the content of GPR rB[4]
(0x0000_0441) as an EA for the jump. After the execution of this instruction the PC address for
the delay slot instruction is PC + 4 (0x2f32_7c54). The address of the next instruction to be ex-
ecuted after the delay slot instruction is 0x0000_0441 (EA). The link register (GPR r9) is set to
0x2f32_7c58. It is the address of the instruction after the delay slot instruction. The ISS then makes
an upcall (generic_read_word) to fetch the next instruction to be executed in the delay slot. The
given transcript shows that the next instruction sent to theISS (at time 1645 ns) is a “load byte
signed” (l.lbs) instruction (0x9081_7049). After the execution of this instruction in the delay

5.6 Discrepancies Between OR1200 and Golden Model 127

slot, the next instruction is fetched from 0x0000_0441 (PC). This results in an unaligned address
access. As discussed earlier, the upcall (generic_read_word) returns zero in response to an un-
aligned address access that is actually the instructionl.j. The next PC address for the delay slot
of this new jump instruction is PC + 4 (0x00000441 + 4 = 0x00000445). As the new calculated
PC is again an unaligned address, it will result in another jump instruction generated by the upcall
(generic_read_word). This new jump instruction will again generate an unaligned PC address
(PC + 4 = 0x00000449) for its delay slot instruction. This is again an unaligned address and it will
result in another jump instruction. This never-ending loopof calculating the unaligned PC address
and generation of the jump instruction by the upcall (generic_read_word) never stops. Conse-
quently, the ISS never generates the upcall needed to fetch anew instruction from the test bench.
This can be seen from the received ISS status after sending the instructionl.lbs (0x9081_7049) at
time 1645 ns. The status shows that the virtual sequencer (V_SEQENCR) sent the delay slot instruc-
tion l.lbs to the ISS. However, the status returned from the ISS shows that it was the instruction
l.j (0x0000_0000) instead of the instructionl.lbs. It is because of the instructionl.jalr which
jumped to an unaligned address (0x0000_0441). Further, theunchanged time (1645 ns) confirms
that the ISS is stuck in a never-ending loop.

Figure 5.26Problem withl.jalr andl.jr in the ISS.

Conclusion

For a simple test, in addition to the instructionsl.jalr andl.jr, we generated the instructions
(l.ori and l.andi) with word aligned immediate values to get a world aligned content of all
GPRs. The coverage results of this test (Figure [5.27]) shows that both instructions (l.jalr and

5.6 Discrepancies Between OR1200 and Golden Model 128

l.jr) work correctly in the OR1200 core when using aligned accesses. It should be noted that the
OR1200 core never generates unaligned accesses to the instruction memory. It uses 30 MSBs of
the PC register to fetch a new instruction thus the address isalways a word aligned. Hence, in the
presence of the discrepancy we discussed with the instructionsl.jr andl.jalr it is not possible
to include them in the main verification test of the OR1200 core.

Figure 5.27Verification coverage results ofl.jalr andl.jr.

5.6.3 Add Immediate Signed and Carry (l.addic) Instruction

A sign extended immediate value is added to the content of GPRrA. The carry flag (SR[CY]) is
also added and finally the result is stored into GPR rD.

l.addic
31 26 25 . . . 21 20 . . . 16 15 0

Opcode 0x28 D A Immediate
6 bits 5 bits 5 bits 16 bits

Problem Discussion

The instructionl.addic is not implemented in the ISS. It generates an illegal exception2 when
executing this instruction, as shown in Figure [5.28].

2The next instruction is fetched from the exception vector (0x0000_0700).

5.6 Discrepancies Between OR1200 and Golden Model 129

Figure 5.28Instructionl.addic generates an illegal exception at the ISS.

Conclusion

Since the instructionl.addic is not implemented in the ISS (golden model), we have to exclude it
from the exhaustive verification of the OR1200 core. The instruction is implemented in the OR1200
core but its correctness is not proven because it is not included in the exhaustive verification test.
Since the carry flag is not controlled by the freeze logic in the OR1200 core (see Subsection5.5.3),
this problem should also be considered for the instructionl.addic. Figure [5.29] shows a correctly
working example of the instructionl.addic on the OR1200 core. At time 195 ns, the instruction
l.addic (0xa386_f921) is in the execution stage (ex_insn). The destination register is rD[28],
register operand one is rA[6] (0x0000_0000) and the immediate value is 0xffff_f921. Thecarry flag
is zero at the time this instruction executes. After the execution of this instruction the correct result
(0xffff_f921) is stored into the destination register rD[28] at time 225 ns. At time 225 ns another
instructionl.addic (0xa3dc_5381) is in the execution stage. The destination register is rD[30],
register operand one is rA[28] (0xffff_f921) and the immediate vlaue is 0x0000_5381. Thecarry
flag is zero. After the execution of this instruction the correct result (0x0000_4ca2) is stored into
the destination register rD[30] at time 255 ns. Thecarry flag is correctly set.

Since the instructionl.addic is not implemented in the ISS, it is excluded from the main
verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.addic. This means that the compiler does not either implement thisinstruction or
often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Figure 5.29Simulation results ofl.addic on the OR1200 core.

1
3

0

5.6 Discrepancies Between OR1200 and Golden Model 131

5.6.4 Load Single Word and Extend with Sign (l.lws) Instruction

A sign extended immediate value is added to the content of GPRrA to calculate the effective
address (EA). A word in the memory is addressed and loaded into GPR rD using this EA.

l.lws
31 26 25 . . . 21 20 . . . 16 15 0

Opcode 0x22 D A Immediate
6 bits 5 bits 5 bits 16 bits

ISS implementation ofl.lws

The ISS implementation shows that the instructionl.lws is an invalid instruction which is not
implemented in the ISS so far. Whenever this instruction is sent to the ISS, it generates an illegal
exception. Figure [5.30] shows that when the instructionl.lws (0x88f7_dbfa) was sent to the ISS,
it generated an illegal exception (the next instruction is fetched from 0x0000_0700).

Figure 5.30Instructionl.lws generates an illegal exception at the ISS.

OR1200 implementation ofl.lws

The instructionl.lws is not implemented in the OR1200 core. Therefore, whenever it is sent to
the OR1200 core, it generates an illegal instruction exception. The waveform in Figure [5.31] shows
that the instructionl.lws (0x88f7_dbfa) is in the execution stage at time 315 ns in the OR1200
core. Theexcept_illegal signal is high which indicates that an illegal instruction is in the execution
stage. An illegal exception results in accessing the next instruction from the illegal_exception vector
(0x0000_0700). The instructionl.lws is a load instruction and supposed to be executed on the
LSU. However, since it is not implemented in the OR1200 core,the lsu_op (LSU opcode) is a NOP
at time 315 ns.

Conclusion

The instructionl.lws is neither implemented in the ISS nor in the OR1200 core. It belongs to
the ORBIS32-I instruction class of the OpenRISC1000 architecture and all instructions belonging
to this class are compulsory to implement [11]. This instruction cannot be included in the main
verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.lws. This means that the compiler does not either implement thisinstruction or

5.6 Discrepancies Between OR1200 and Golden Model 132

often generate it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

Figure 5.31Simulation results ofl.lws on the OR1200 core.

1
3

3

5.6 Discrepancies Between OR1200 and Golden Model 134

5.6.5 MAC Read and Clear (l.macrc) Instruction

The instructionl.macrc is used for the MAC unit synchronization. When all instructions in the
MAC unit’s pipeline are completed, the content of the MAC accumulator (MACHI, MACLO) is
stored into GPR rD and the accumulator is cleared.

l.macrc
31 26 25 . . . 21 20 . . 17 16 0

Opcode 0x6 D Reserved Opcode 0x10000
6 bits 5 bits 4 bits 17bits

ISS implementation ofl.macrc

The ISS implementation of the instructionl.macrc is given below. It shows that the values in the
registers MACHI and MACLO are stored in a long variable (64-bit) which is then shifted right 28
times. This shifting is a problem since there is no reason to perform it.

/ * ********* execgen . c********* * /

case 0x1 :
/ * Not un ique : r e a l mask f f f f f f f f f c 0 1 f f f f and c u r r e n t mask fc010000 d i f f e r − do

f i n a l check * /
i f ((i n s n & 0 x f c 0 1 f f f f) == 0x18010000) {

/ * I n s t r u c t i o n : l . macrc * /
{

u o r r e g _ t a ;
/ * Number o f operands : 1* /
a = (i n s n >> 21) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
{ / * " l_macrc " * /

u o r r e g _ t lo , h i ;
LONGEST l ;
/ * No need f o r s y n c h r o n i z a t i o n here−− a l l MAC i n s t r u c t i o n s are 1 c y c l e long .

* /
l o = c p u _ s t a t e . s p r s [SPR_MACLO] ;
h i = c p u _ s t a t e . s p r s [SPR_MACHI] ;
l = (ULONGEST) lo | ((LONGEST) h i << 32) ;
l >>= 28 ;
/ / PRINTF ("<%08x >\ n " , (uns igned long) l) ;
SET_PARAM0 ((o r r e g _ t) l) ;
c p u _ s t a t e . s p r s [SPR_MACLO] = 0 ;
c p u _ s t a t e . s p r s [SPR_MACHI] = 0 ;

}
undef SET_PARAM
undef PARAM0

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 6 ; / * " l . macrc " * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
} e l s e {

/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

5.6 Discrepancies Between OR1200 and Golden Model 135

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
c p u _ s t a t e . reg [0] = 0 ; / * Repa i r i n case we changed i t* /

}
}
break ;

}
break ;

Figure [5.32] shows that the instructionl.macrc (0x1943_0000) is sent to the ISS and the
destination register is rD[10]. By the time this instruction is executed, the register MACHI is
0x0000_0000 and the register MACLO is 0x68ad_f2f9. After the execution of this instruction
the destination register rD[10] is 0x0000_0006 while the correct result is 0x68ad_f2f9. This is an
implementation fault since the result is shifted right 28 times.

Figure 5.32Execution results ofl.macrc on the ISS.

The same instructionl.macrc (0x1943_0000) is correctly executed on the OpenRISC1200
core. Figure [5.33] shows the mismatch between the wrong result from the ISS anda correct result
from the OR1200 core.

Conclusion

The instructionl.macrc is not working correctly in the golden model (ISS), therefore it is ex-
cluded from the main verification test of the OR1200 core. Theinstruction is working correctly in
the OR1200 core as it generated a correct result. However, its correctness is not proven because it
is not included in the exhaustive verification test.

Several benchmark programs were compiled using OR32 C/C++ compiler but it did not generate
the instructionl.macrc. This means that the compiler does not either implement thisinstruction
or often use it. This is the reason why this error stayed unidentified before. However, the OR32
assembler could assemble code that uses this instruction.

5.6 Discrepancies Between OR1200 and Golden Model 136

Figure 5.33Results mismatch ofl.macrc from the OR1200 core and the ISS.

5.6.6 Rotate Right (l.ror) Instruction

The contents of GPR rA are rotated right by the number of bit positions specified by GPR rB. The
result is then placed into GPR rD.

l.ror
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 9 . . 6 5 4 3 . . 0

Opcode 0x38 D A B Reserved Opcode 0x3 Reserved Opcode 0x8
6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 4 bits 4 bits

Problem Discussion

The instructionl.ror is not implemented in the ISS that is why it results in an illegal exception.
The instruction is implemented in the OR1200 core and working correctly. When this instruction
was implemented in the OR1200 core, the OR32 C/C++ compiler did not generate rotate instruc-
tions. However, the OR32 assembler could assemble code thatuses rotate instructions. It means that
rotate instructions must be inserted manually. By default the implementation of rotate instructions
is disabled in the OR1200 core to save area and to increase theclock frequency [12]. A simula-
tion of the instructionl.ror is shown in Figure [5.34] to show that it is working correctly in the
OR1200 core. The waveform shows that the instructionl.ror (0xe143_f0e8) is in the execution
stage (ex_insn) at time 13265 ns. The destination register is rD[10], register operand one is rA[3]
(0x0000_f7dd) and register operand two is rB[30] (0x0000_eeb7). Operand ‘a’ (rA[3]) is rotated
right by the number of bit positions specified in operand ‘b’ (rB[30]). At time 13265 ns the correct
result (0x01ef_ba00) is calculated and the destination register (rD[10]) is finally updated at time
13295 ns.

Conclusion

The instructionl.ror is not implemented in the golden model (ISS), therefore it isexcluded from
the main verification test of the OR1200 core. The instruction is working correctly in the OR1200

5.6 Discrepancies Between OR1200 and Golden Model 137

core as it generated a correct result. However, its correctness is not proven because it is not included
in the exhaustive verification test.

Since the OR32 C/C++ compiler does not generate rotate instructions, the instructionl.ror is
not often used. This is the reason why this error stayed unidentified before.

Figure 5.34Simulation results ofl.ror on the OR1200 core.

1
3

8

5.6 Discrepancies Between OR1200 and Golden Model 139

5.6.7 Rotate Right with Immediate (l.rori) Instruction

The contents of GPR rA is rotated right by the number of bit positions specified by a 5-bit imme-
diate value (L). The result is then placed into GPR rD.

l.rori
31 26 25 . . . 21 20 . . . 16 15 8 7 6 5 0

Opcode 0x2e D A Reserved Opcode 0x3 L
6 bits 5 bits 5 bits 8 bits 2 bits 6 bits

Problem Discussion

The instructionl.rori is not implemented in the ISS that is why it results in an illegal exception.
The instruction is implemented in the OR1200 core and working correctly. A simulation of the
instructionl.rori is shown in Figure [5.35] to show that it is correctly working in the OR1200
core. When the instruction isl.rori, operand ‘b’ is a 16-bit immediate value and its last 5 bits
contain the value by which operand ‘a’ is rotated right. The waveform shows that the instruction
l.rori (0xbbdc_edfd) is in the execution stage (ex_insn) at time 225 ns. The destination register
is rD[30], register operand one is rA[28] (0xffff_f921) andthe immediate value = 0x0000_001d
(L) (last 5 bits of a 16-bit immediate value i.e., 0x0000_edfd). Operand ‘a’ (rA[28]) is rotated
right by the number of bit positions specified by operand ‘b’ (L). At time 225 ns, the correct result
(0xffff_c90f) is calculated and then stored into the destination register (rD[30]) at time 255 ns.

Conclusion

The instructionl.rori is not implemented in the golden model (ISS), therefore it isexcluded
from the main verification test of the OR1200 core. The instruction is working correctly in the
OR1200 core as it generated a correct result. However, its correctness is not proven because it is not
included in the exhaustive verification test.

Since the OR32 C/C++ compiler does not generate rotate instructions, the instructionl.rori
is not often used. This is the reason why this error stayed unidentified before.

Figure 5.35Simulation results ofl.rori on the OR1200 core.

1
4

0

5.7 The OpenRISC1200 Verification Coverage Results 141

5.6.8 Move to/from Special Purpose Registers (l.mtspr/l.mfspr)

The content of GPR rB is moved into an SPR defined by the contentof GPR rA logically ORed
with an immediate value.

l.mtspr
31 26 25 . . . 21 20 . . . 16 15 . . . 11 10 0

Opcode 0x30 K A B K
6 bits 5 bits 5 bits 5 bits 11 bits

Problem Discussion

The ISS implementation of the instructionl.mtspr (AppendixA.4) shows that the destination
SPR is not defined according to the instruction’s description. It is defined by the content of operand
‘a’ added to operand ‘c’ (immediate value) instead of logically ORed. Hence, this implementation
differs from thel.mtspr implementation in the OR1200 core where the destination SPRis defined
by the content of GPR rA logically ORed with an immediate value. The instruction “Move From
Special Purpose Register” (l.mfspr) has the same implementation difference between the ISS and
the OR1200 core.

Conclusion

The implementation of the instructionsl.mtspr andl.mfspr is different from the specification
in the OpenRISC1000 architectural manual [11]. However, the OR1200 core implements both
instructions according to their specification in the manual. Hence, in presence of this difference, it
is not possible to include these instructions in the main verification test of the OR1200 core.

5.7 The OpenRISC1200 Verification Coverage Results

5.7.1 Overview

This section presents the verification completeness (coverage) of the OR1200 core. It should be
noted that all instructions and scenarios which have a problem either in the golden model (ISS) or
in the OR1200 core (DUV) are not included in this verification.

5.7.2 OR1200 Functional Verification Coverage

Figure [5.36] shows the achieved verification coverage of the OR1200 core. The verification envi-
ronment is discussed in the Section (4.4). This coverage is the maximum we could achieve without
generating the erroneous instructions (either in the OR1200 core or in its ISS). Table [5.1] shows the
OR1200 instruction set, the erroneous instructions and different instruction formats. The description
about each coverage group in the coverage model (mvc_coverage_model) is given below.

Program Counter Coverage

The coverage groupcov_pc shows the achieved coverage of the PC register of the OR1200 core.
It also covers whether an illegal address is accessed duringthe period of simulation.

5.7 The OpenRISC1200 Verification Coverage Results 142

OR1200 Instruction Set Erroneous Instructions Instruction Formats

l.addi, l.addc, l.lwz, l.sw, l.j,
l.jal, l.bf, l.bnf, l.rfe, l.andi,
l.ori, l.nop, l.sfeq, l.sfne, l.add,
l.addic, l.cmov, l.div, l.extbs,
l.mac, l.mul, l.sll, l.mfspr,
l.mtspr, l.and, l.csync, l.divu,
l.extbz, l.exths, l.exthz, l.ff1,
l.jalr, l.jr, l.lbs, l.lbz, l.lhs, l.lhz,
l.lws, l.maci, l.macrc, l.movhi,
l.msb, l.msync, l.muli, l.mulu,
l.or, l.psync, l.ror, l.rori, l.sb,
l.sfeqi, l.sfges, l.sfgesi, l.sfgeu,
l.sfgeui, l.sfgts, l.sfgtsi, l.sfgtu,
l.sfgtui, l.sfles, l.sflesi, l.sfleu,
l.sfleui, l.sflts, l.sfltsi, l.sfltu,
l.sfltui, l.sfnei, l.sh, l.slli, l.sra,
l.srai, l.srl, l.srli, l.sub, l.xor,
l.xori, l.fl1 [11]

l.addc, l.jr,
l.jalr, l.addic,
l.div, l.divu,
l.extbs, l.extbz,
l.exths, l.exthz,
l.mfspr,
l.mtspr, l.lws,
l.ror, l.rori,
l.muli, l.mulu,
l.maci, l.macrc,
l.fl1

(A) l.insn rD, rA, rB
(B) l.insn rA, rB
(C) l.insn rD, rA, I
Immediate7→ 16 bits ([15:0])

(D) l.insn rA, I
Immediate7→ 16 bits ([15:0])

(E) l.insn I (rA), rB
Immediate7→ 16 bits ([25:21]+[10:0])

(F) l.insn rD, rA, L
Immediate7→ 6 bits ([5:0])

(G) l.insn N
EA 7→ 26 bits ([25:0])

(H) l.insn rD, K (16 bits 7→ [15:0])
(I) l.insn rD, rA
(J) l.insn rB
(K) l.insn rD
(L) l.insn rB, I
Immediate7→ 16 bits ([25:21]+[10:0])

Table 5.1OR1200 instruction set.

Total Executed Instructions Coverage

The coverage groupcov_dut_instruction_total covers the total number of instructions executed
on the OR1200 core. The coverage groupcov_iss_instruction_total covers the total number of
instructions executed on the ISS and it should be equal to thecore’s coverage. All erroneous in-
structions are excluded in both coverage groups.

Instruction Specific Coverage

The coverage groupcov_dut_instruction_type provides instruction specific verification statis-
tics. It comprises of a number of coverage points which provide a statistical details of different
aspects that are required to be verified (see Section4.4.1). There are some coverage points needed
for the cross coverage namelydest_reg, src_1_reg, src_2_reg, Immed_6_bits, Immed_16_bits,
Immed_16_bits_dist, Immed_26_bits, cover_carry, cover_carry_delay, cover_flag, cover_flag_delay,
cover_ov_flag, cover_ov_flag_delay, stage_1_insn, stage_2_insn, stage_3_insn, stage_4_insn.

Other coverage points are individually described below.

dut_insn: This coverage point stores the histogram of all instructions executed on the OR1200
core. In total there are 78 instructions in the OR1200 instruction set. Only 58 could be
included in the verification test because the rest have problems (see Table5.1). The reports
about the erroneous instructions are provided in Section (5.5) and Section (5.6).

Equation (5.1) shows the maximum achievable verification coverage for this coverage point.

Maximum possible coverage=
58
78

∗100 = 74.3% (5.1)

Figure [5.36] shows that the maximum possible coverage is achieved.

5.7 The OpenRISC1200 Verification Coverage Results 143

cross_insn_X_rD_rA_rB: This coverage point provides verification coverage statistics for
instructions of format (A) in Table (5.1). The coverage point shows that all tested instructions
correctly write to and read from all 32 GPRs (as their register operands). This coverage point
is basically a cross coverage between the following coverage points:dut_insn, dest_reg,
src_1_reg andsrc_2_reg. There are 17 instructions of format (A) in the OR1200 instruc-
tion set while six of them are erroneous. Equation (5.2) shows the maximum achievable
verification coverage for this coverage point.

Maximum possible coverage=
11
17

∗100 = 64.7% (5.2)

Figure [5.36] shows that 93% of the maximum possible coverage is achieved. Since the test
space is quite large, it takes very long simulation time to achieve 100% maximum possible
coverage. One possible solution was to write a directed testand generate instructions of
format (B) only. We did achieve 100% coverage from this directed test.

cross_insn_X_rA_rB: This coverage point provides verification coverage statistics for in-
structions of format (B) in Table (5.1). The coverage point shows that all these instructions
correctly write to and read from all GPRs (as their register operands). This coverage point
is basically a cross coverage between the following coverage points:dut_insn, src_1_reg
andsrc_2_reg. Figure [5.36] shows that 100% coverage is achieved.

cross_insn_X_rD_rA_Immed16: This coverage point provides verification coverage statis-
tics for instructions of format (C) in Table (5.1). The coverage point shows that all tested
instructions use a valid 16 bits immediate value and correctly write to and read from all
GPRs (as their register operands). This coverage point is basically a cross coverage between
the following coverage points:dut_insn, dest_reg, src_1_reg andImmed_16_bits. In
total there are 13 instructions of format (C) in the OR1200 instruction set while four of them
are erroneous. Equation (5.3) shows the maximum achievable verification coverage for this
coverage point.

Maximum possible coverage=
9
13

∗100 = 69.2% (5.3)

Figure [5.36] shows that the maximum possible coverage is achieved.

cross_insn_X_rA_Immed16: This coverage point provides verification coverage statistics
for instructions of format (D) in Table (5.1). This coverage point is a cross coverage between
the following coverage points:dut_insn, src_1_reg andImmed_16_bits. Figure [5.36]
shows that 100% coverage is achieved.

cross_insn_X_rA_rB_Immed16_dist: This coverage point provides verification cover-
age statistics for instructions of format (E) in Table (5.1). This coverage point is basically
a cross coverage between the following coverage points:dut_insn, dest_reg, src_1_reg
and Immed_16_bits_dist. There are four instructions of format (E) while one of them
is erroneous. Equation (5.4) shows the maximum achievable verification coverage for this
coverage point.

Maximum possible coverage=
3
4
∗100 = 75% (5.4)

5.7 The OpenRISC1200 Verification Coverage Results 144

Figure [5.36] shows that the maximum possible coverage is successfully achieved.

cross_insn_X_rD_rA_Immed6: This coverage point provides verification coverage statis-
tics for instructions of format (F) in Table (5.1). It is basically a cross coverage between the
following coverage points:dut_insn, dest_reg, src_1_reg andImmed_6_bits. There
are four instructions of format (F) while one of them is erroneous. Equation (5.5) shows the
maximum achievable verification coverage for this coveragepoint.

Maximum possible coverage=
3
4
∗100 = 75% (5.5)

Figure [5.36] shows that the maximum possible coverage is achieved.

cross_insn_X_Immed26: This coverage point provides verification coverage statistics for in-
structions of format (G) in Table (5.1). It is basically a cross coverage between the following
coverage points:dut_insn andImmed_26_bits. Figure [5.36] shows that 100% coverage
is achieved.

cross_insn_X_rD_Immed16: This coverage point provides verification coverage statistics
for instructions of format (H) in Table (5.1). It is basically a cross coverage between the
following coverage points:dut_insn, dest_reg andImmed_16_bits. Figure [5.36] shows
that 100% coverage is achieved.

cross_insn_X_rD_rA: This coverage point provides verification coverage statistics for in-
structions of format (I) in Table (5.1). There are four instructions of format (I) and all of
them are erroneous. Figure [5.36] shows that 0% coverage is achieved.

cross_insn_X_rB: This coverage point provides verification coverage statistics for instruc-
tions of format (J) in Table (5.1). There are two instructions of format (J) and both are
erroneous. Figure [5.36] shows that 0% coverage is achieved.

cross_insn_X_rD: This coverage point provides verification coverage statistics for instruc-
tions of format (K) in Table (5.1). There is only one instruction of format (K) and it is
erroneous. Figure [5.36] shows that 0% coverage is achieved.

cross_insn_X_rB_Immed16_dist: This coverage point provides the verification coverage
statistics for the instructions of format (L) in Table (5.1). There is only one instruction of
format (L) and it is erroneous. Figure [5.36] shows that 0% coverage is achieved.

cross_insn_X_carry_carrydelay: This coverage point stores the histogram of all in-
structions that can drive the carry flag (CY). It verifies thatall these instructions correctly set
and reset the carry flag. There are ten such instructions while six of them are erroneous. It is
basically a cross coverage between the following coverage points: dut_insn, cover_carry
andcover_carry_delay. Equation (5.6) shows the maximum achievable verification cov-
erage for this coverage point.

Maximum possible coverage=
4
10

∗100 = 40% (5.6)

Figure [5.36] shows that the maximum possible coverage is achieved.

5.7 The OpenRISC1200 Verification Coverage Results 145

cross_insn_X_flag_flagdelay: This coverage point stores the histogram of all instruc-
tions that can drive the branch flag (F). It verifies that all these instructions correctly set
and reset this flag. It is basically a cross coverage between the following coverage points:
dut_insn, cover_flag andcover_flag_delay. Figure [5.36] shows that 100% coverage
is achieved.

cross_insn_X_ovflag_ovflagdelay: This coverage point stores the histogram of all in-
structions that can drive the overflow flag (OV). It verifies that all these instructions correctly
set and reset this flag. It is basically a cross coverage between the following coverage points:
dut_insn, cover_ov_flag and cover_ov_flag_delay. There are ten such instructions
while six of them are erroneous. It means that the total number of combinations is 40. The
combinations for one instruction are given below.

1. l.insn, ov_low, ov_low

2. l.insn, ov_low, ov_high

3. l.insn, ov_high, ov_low

4. l.insn, ov_high, ov_high

Since four instructions are working correctly, 16 combinations can be covered at maximum.
However, as discussed in Subsection (5.5.9), the overflow flag is not correctly implemented
in the OR1200 core. Therefore, only four combinations can becovered (OV flag stays low).
Equation (5.7) shows the maximum achievable verification coverage for this coverage point.

Maximum possible coverage=
4
40

∗100 = 10% (5.7)

Figure [5.36] cross verifies the calculated verification coverage.

cross_cov_insn_3_stage: This coverage stores the histogram of three instructions inthe
OR1200 pipeline (in contiguous stages) to account the dependencies between instructions.
It is basically a cross coverage between the following coverage points: stage_1_insn,
stage_2_insn andstage_3_insn. As there are total 78 instructions in total, the overall
number of combinations to cover is 474552. Since only 58 instructions are working cor-
rectly, the total number of correctly working combinationsis 195112. Moreover, we have to
restrict the generation of jump/branch instructions in thedelay slot. This constraint is rele-
vant only for the verification of the OR1200 core. The reason behind this restriction is to stop
the generation of a sequence of instructions with two consecutive jump/branch instructions
followed by another instruction which can generate an exception. If the delay slot instruction
generates an exception in the ISS, the EPCR is set to PC− 4. However, if the jump/branch
instruction of this delay slot itself is executing in the delay slot of another jump/branch in-
struction, the value of EPCR is incorrect and nondeterministic. This restriction excludes
1856 combinations as there are four working jump/branch instructions having a delay slot.
Equation (5.8) shows the maximum achievable verification coverage for this coverage point.

Maximum possible coverage=
(195112−1856)

474552
∗100 = 40.7% (5.8)

5.7 The OpenRISC1200 Verification Coverage Results 146

Figure [5.36] shows that 98.2% of the maximum possible coverage is achieved. Since the test
space is quite large, it takes very long simulation time to achieve 100% maximum possible
coverage.

Figure 5.36Functional verification coverage of the OR1200 core.

Chapter 6
Conclusions and Future Work

6.1 Conclusions

This thesis is divided into two major parts: the first part is the implementation of a CPU Subsystem
and the second part is the functional verification of this Subsystem.

The CPU Subsystem is used in an advance control architecturefor multimode transceivers.
It operates as a central control unit of the architecture. Its foremost function is to configure the
transceiver and its interface for a particular communication standard. The Subsystem is comprised
of an open source OR1200 core, a triple-layer Sub-bus system, a memory subsystem and several
interfaces. All components comply with the Wishbone interconnection standard. The OR1200
GNU toolchain is used to generate the memory initializationfile for the OR1200 core and also
for an early code analysis. The simulation-based verification of the CPU Subsystem includes the
coverage-driven constrained random verification of the OR1200 core, the Sub-bus system and the
memory subsystem. For the verification of the OR1200 core, a golden model is implemented using
the OR1200 ISS with a SystemC wrapper around to incorporate the verification environment. More-
over, OVM is used to implement a configurable and reusable verification environment. This thesis
includes the co-simulation of the programming languages VHDL, Verilog, C, C++ (SystemC), DPI
and SystemVerilog.

The verification results of the Sub-bus system and the memorysystem show that both subsys-
tems are implemented correctly. Furthermore, the simulation of the CPU Subsystem demonstrates
that it provides the maximum possible throughput for most ofthe OR1200 instructions i.e., three
clock cycles for single cycle instructions.

The verification results of the OR1200 core describe that thecore has some malfunctions in-
cluding (i) erroneous instructions, (ii) unimplemented instructions, (iii) design errors and (iv) dis-
crepancies between the specification and its implementation. Moreover, the OR1200 ISS (golden
model) also has some implementation errors and unimplemented instructions. This significantly
restricts the achievable verification coverage of the OR1200 core. There are 78 instructions in the
OR1200 instruction set but only 58 instructions could be included in the verification test because 20
instructions are erroneous or unimplemented (either in theOR1200 core or in its ISS). Hence, the
single instruction verification coverage is restricted to 74.3%. The cross coverage of three contigu-
ous instructions to observe the dependencies between the instructions is restricted to 40.7%.

147

6.2 Future Work 148

6.2 Future Work

There are several improvements which could be done for a morequalitative verification of the
CPU Subsystem. Some possible improvements are listed below.

1. A possible improvement could be to perform the functionalverification of the OR1200 core
after the rectification of all found malfunctions in the coreand in its ISS.

2. Another possible improvement could be to perform the formal verification of the OR1200
core, the Sub-bus system and the memory system.

3. It could be possible to perform the verification of the peripherals of the OR1200 processor
such as the debug unit, the power management unit and the interrupt controller.

Furthermore, it could be possible to enhance the throughputof the CPU Subsystem by maxi-
mizing the throughput of Wishbone interfaces of the OR1200 core.

Appendix A
Appendices

A.1 Software development

A.1.1 Test application program

/ * ************ T e s t a p p l i c a t i o n program (main . c)************ * /

inc lude " T es t . h "
de f ine SIM
i f d e f SIM
vo id e x i t _ s i m (vo id) {

__asm__ _ _ v o l a t i l e _ _ (" l . add r3 , r0 ,%0\ n \ t "
" l . nop %1" : : " r " (1) , "K" (0 x0001)) ;

}
end i f
i n t mem[] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 } ;
s t a t i c i n t b = 6 ;
i n t main () {

i n t i = 12 ;
i f (i % 5 == 0) {
mem[b] = mem[b] + 5 ;
}
i += 2 ;
i f (i % 2 == 0) {

i = Mult (1 0) ;
}

i f d e f SIM
e x i t _ s i m () ;

end i f
re tu rn 0 ;

}

/ *−−−−−−−−−−−−−−−−−T e s t . h−−−−−−−−−−−−−−−−−* /
i f n d e f TEST
de f ine TEST

i n t Mult (i n t a) ;
end i f

/ *−−−−−−−−−−−−−−−−−T e s t . c−−−−−−−−−−−−−−−−−* /
inc lude " T es t . h "

149

A.1 Software development 150

i n t Mult (i n t a) {
i f (a <= 1) re tu rn 1 ;
a = a * Mult (a − 1) ;
re tu rn a ;

}

A.1.2 Disassembly file of the test program

/**************** T es t . l s t***************** /

o u t p u t : f i l e fo rm at e l f 32−or32

S e c t i o n s :
Idx Name S ize VMA LMA F i l e o f f Algn

0 . bss 00000050 f0000000 f0000000 00002000 2** 0
ALLOC

1 . t e x t 000002 dc 00000100 00000100 00000100 2** 2
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

2 . d a t a 00000040 000003 dc 000003 dc 000003 dc 2** 2
CONTENTS, ALLOC, LOAD, DATA

3 . r d a t a 00000010 0000041 c 0000041 c 0000041 c 2** 0
CONTENTS, ALLOC, LOAD, DATA

4 . s t a b 0000030 c 00000000 00000000 0000042 c 2** 2
CONTENTS, RELOC, READONLY, DEBUGGING

5 . s t a b s t r 000004 f5 00000000 00000000 00000738 2** 0
CONTENTS, READONLY, DEBUGGING

6 . comment 00000024 00000000 00000000 00000 c2d 2** 0
CONTENTS, READONLY

Disassembly of s e c t i o n . t e x t :

00000100 < _ s t e x t >:
100: 18 20 f0 00 l . movhi r1 , 0 xf000
104: a8 21 04 50 l . o r i r1 , r1 , 0 x450

00000108 <_mem_data_copy >:
108: 18 60 f0 00 l . movhi r3 , 0 xf000
10 c : a8 63 00 00 l . o r i r3 , r3 , 0 x0
110: 18 80 00 00 l . movhi r4 , 0 x0
114: a8 84 03 dc l . o r i r4 , r4 , 0 x3dc
118: 18 a0 00 00 l . movhi r5 , 0 x0
11 c : a8 a5 04 1c l . o r i r5 , r5 , 0 x41c
120: e0 a5 20 02 l . sub r5 , r5 , r4
124: bc 05 00 00 l . s f e q i r5 , 0 x0
128: 10 00 00 0a l . b f 150 <_jump_main >
12 c : 15 00 00 00 l . nop 0x0

00000130 <_mem_data_loop >:
130: 84 c4 00 00 l . lwz r6 , 0 x0 (r4)
134: d4 03 30 00 l . sw 0x0 (r3) , r6
138: 9c 63 00 04 l . add i r3 , r3 , 0 x4
13 c : 9c 84 00 04 l . add i r4 , r4 , 0 x4
140: 9c a5 f f f c l . add i r5 , r5 , 0 x f f f f f f f c
144: bd 45 00 00 l . s f g t s i r5 , 0 x0
148: 13 f f f f f a l . b f 130 < _ _ s t a c k +0 x f f f f c e 0 >
14 c : 15 00 00 00 l . nop 0x0

00000150 <_jump_main >:
150: 18 40 00 00 l . movhi r2 , 0 x0
154: a8 42 02 30 l . o r i r2 , r2 , 0 x230
158: 44 00 10 00 l . j r r2
15 c : 15 00 00 00 l . nop 0x0

A.1 Software development 151

00000160 <_Mult > :
i n c l u d e " T e s t . h "

i n t Mult (i n t a) {
160: 9c 21 f f d4 l . add i r1 , r1 , 0 x f f f f f f d 4
164: d4 01 10 04 l . sw 0x4 (r1) , r2
168: 9c 41 00 2c l . add i r2 , r1 , 0 x2c
16 c : d4 01 48 00 l . sw 0x0 (r1) , r9
170: d7 e2 1 f f c l . sw 0 x f f f f f f f c (r2) , r3

i f (a <= 1) re tu rn 1 ;
174: 84 62 f f f c l . lwz r3 , 0 x f f f f f f f c (r2)
178: d7 e2 1 f e8 l . sw 0 x f f f f f f e 8 (r2) , r3
17 c : 84 82 f f e8 l . lwz r4 , 0 x f f f f f f e 8 (r2)
180: bd 44 00 01 l . s f g t s i r4 , 0 x1
184: 10 00 00 06 l . b f 19 c <_Mult +0x3c >
188: 15 00 00 00 l . nop 0x0
18 c : 9c 60 00 01 l . add i r3 , r0 , 0 x1
190: d7 e2 1 f f0 l . sw 0 x f f f f f f f 0 (r2) , r3
194: 00 00 00 15 l . j 1e8 <_Mult +0x88 >
198: 15 00 00 00 l . nop 0x0

a = a * Mult (a − 1) ;
19 c : 84 82 f f f c l . lwz r4 , 0 x f f f f f f f c (r2)
1a0 : d7 e2 27 e4 l . sw 0 x f f f f f f e 4 (r2) , r4
1a4 : 84 62 f f e4 l . lwz r3 , 0 x f f f f f f e 4 (r2)
1a8 : 9c 63 f f f f l . add i r3 , r3 , 0 x f f f f f f f f
1 ac : d7 e2 1 f f4 l . sw 0 x f f f f f f f 4 (r2) , r3
1b0 : 84 62 f f f4 l . lwz r3 , 0 x f f f f f f f 4 (r2)
1b4 : 07 f f f f eb l . j a l 160 < _ _ s t a c k +0 x f f f f d 1 0 >
1b8 : 15 00 00 00 l . nop 0x0
1bc : d7 e2 5 f f8 l . sw 0 x f f f f f f f 8 (r2) , r11
1c0 : 84 82 f f f c l . lwz r4 , 0 x f f f f f f f c (r2)
1c4 : d7 e2 27 e0 l . sw 0 x f f f f f f e 0 (r2) , r4
1c8 : 84 62 f f e0 l . lwz r3 , 0 x f f f f f f e 0 (r2)
1 cc : 84 82 f f f8 l . lwz r4 , 0 x f f f f f f f 8 (r2)
1d0 : e0 63 23 06 l . mul r3 , r3 , r4
1d4 : d7 e2 1 f dc l . sw 0 x f f f f f f d c (r2) , r3
1d8 : 84 62 f f dc l . lwz r3 , 0 x f f f f f f d c (r2)
1dc : d7 e2 1 f f c l . sw 0 x f f f f f f f c (r2) , r3

re tu rn a ;
1e0 : 84 82 f f f c l . lwz r4 , 0 x f f f f f f f c (r2)
1e4 : d7 e2 27 f0 l . sw 0 x f f f f f f f 0 (r2) , r4
1e8 : 84 62 f f f0 l . lwz r3 , 0 x f f f f f f f 0 (r2)
1 ec : d7 e2 1 f ec l . sw 0 x f f f f f f e c (r2) , r3

}
1 f0 : 85 62 f f ec l . lwz r11 , 0 x f f f f f f e c (r2)
1 f4 : 85 21 00 00 l . lwz r9 , 0 x0 (r1)
1 f8 : 84 41 00 04 l . lwz r2 , 0 x4 (r1)
1 f c : 44 00 48 00 l . j r r9
200: 9c 21 00 2c l . add i r1 , r1 , 0 x2c

00000204 < _ex i t_s im >:
i n c l u d e " T e s t . h "
d e f i n e SIM
i f d e f SIM
vo id e x i t _ s i m (vo id) {

204: 9c 21 f f f8 l . add i r1 , r1 , 0 x f f f f f f f 8
208: d4 01 10 00 l . sw 0x0 (r1) , r2
20 c : 9c 41 00 08 l . add i r2 , r1 , 0 x8

__asm__ _ _ v o l a t i l e _ _ (" l . add r3 , r0 ,%0\ n \ t "
210: 9c 60 00 01 l . add i r3 , r0 , 0 x1
214: d7 e2 1 f f c l . sw 0 x f f f f f f f c (r2) , r3

A.1 Software development 152

218: 84 62 f f f c l . lwz r3 , 0 x f f f f f f f c (r2)
21 c : e0 60 18 00 l . add r3 , r0 , r3
220: 15 00 00 01 l . nop 0x1
224: 84 41 00 00 l . lwz r2 , 0 x0 (r1)
228: 44 00 48 00 l . j r r9
22 c : 9c 21 00 08 l . add i r1 , r1 , 0 x8

00000230 <_main >:
}
e n d i f
i n t mem[] = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 } ;
s t a t i c i n t b = 6 ;

i n t main () {
230: 9c 21 f f 8c l . add i r1 , r1 , 0 x f f f f f f 8 c
234: d4 01 10 04 l . sw 0x4 (r1) , r2
238: 9c 41 00 74 l . add i r2 , r1 , 0 x74
23 c : d4 01 48 00 l . sw 0x0 (r1) , r9

i n t i = 12 ;
240: 9c 60 00 0c l . add i r3 , r0 , 0 xc
244: d7 e2 1 f d0 l . sw 0 x f f f f f f d 0 (r2) , r3
248: 84 82 f f d0 l . lwz r4 , 0 x f f f f f f d 0 (r2)
24 c : d7 e2 27 f c l . sw 0 x f f f f f f f c (r2) , r4

i f (i % 5 == 0) {
250: 84 62 f f f c l . lwz r3 , 0 x f f f f f f f c (r2)
254: d7 e2 1 f cc l . sw 0 x f f f f f f c c (r2) , r3
258: 9c 80 00 05 l . add i r4 , r0 , 0 x5
25 c : d7 e2 27 c4 l . sw 0 x f f f f f f c 4 (r2) , r4
260: 84 62 f f cc l . lwz r3 , 0 x f f f f f f c c (r2)
264: 84 82 f f c4 l . lwz r4 , 0 x f f f f f f c 4 (r2)
268: e0 63 23 09 l . d i v r3 , r3 , r4
26 c : d7 e2 1 f c8 l . sw 0 x f f f f f f c 8 (r2) , r3
270: 84 62 f f c8 l . lwz r3 , 0 x f f f f f f c 8 (r2)
274: d7 e2 1 f c0 l . sw 0 x f f f f f f c 0 (r2) , r3
278: 84 82 f f c0 l . lwz r4 , 0 x f f f f f f c 0 (r2)
27 c : b8 84 00 02 l . s l l i r4 , r4 , 0 x2
280: d7 e2 27 bc l . sw 0 x f f f f f f b c (r2) , r4
284: 84 62 f f bc l . lwz r3 , 0 x f f f f f f b c (r2)
288: 84 82 f f c8 l . lwz r4 , 0 x f f f f f f c 8 (r2)
28 c : e0 63 20 00 l . add r3 , r3 , r4
290: d7 e2 1 f bc l . sw 0 x f f f f f f b c (r2) , r3
294: 84 62 f f cc l . lwz r3 , 0 x f f f f f f c c (r2)
298: 84 82 f f bc l . lwz r4 , 0 x f f f f f f b c (r2)
29 c : e0 63 20 02 l . sub r3 , r3 , r4
2a0 : d7 e2 1 f d8 l . sw 0 x f f f f f f d 8 (r2) , r3
2a4 : 84 62 f f d8 l . lwz r3 , 0 x f f f f f f d 8 (r2)
2a8 : bc 23 00 00 l . s f n e i r3 , 0 x0
2 ac : 10 00 00 2b l . b f 358 <_main+0x128 >
2b0 : 15 00 00 00 l . nop 0x0

mem[b] = mem[b] + 5 ;
2b4 : 18 80 00 00 l . movhi r4 , 0 x0
2b8 : a8 84 04 18 l . o r i r4 , r4 , 0 x418
2bc : d7 e2 27 b8 l . sw 0 x f f f f f f b 8 (r2) , r4
2c0 : 84 62 f f b8 l . lwz r3 , 0 x f f f f f f b 8 (r2)
2c4 : 84 63 00 00 l . lwz r3 , 0 x0 (r3)
2c8 : d7 e2 1 f dc l . sw 0 x f f f f f f d c (r2) , r3
2 cc : 18 80 00 00 l . movhi r4 , 0 x0
2d0 : a8 84 04 18 l . o r i r4 , r4 , 0 x418
2d4 : d7 e2 27 b4 l . sw 0 x f f f f f f b 4 (r2) , r4
2d8 : 84 62 f f b4 l . lwz r3 , 0 x f f f f f f b 4 (r2)
2dc : 84 63 00 00 l . lwz r3 , 0 x0 (r3)
2e0 : d7 e2 1 f e0 l . sw 0 x f f f f f f e 0 (r2) , r3
2e4 : 18 80 00 00 l . movhi r4 , 0 x0
2e8 : a8 84 03 dc l . o r i r4 , r4 , 0 x3dc
2 ec : d7 e2 27 b0 l . sw 0 x f f f f f f b 0 (r2) , r4

A.1 Software development 153

2 f0 : 84 62 f f e0 l . lwz r3 , 0 x f f f f f f e 0 (r2)
2 f4 : b8 63 00 02 l . s l l i r3 , r3 , 0 x2
2 f8 : d7 e2 1 f ac l . sw 0 x f f f f f f a c (r2) , r3
2 f c : 84 82 f f ac l . lwz r4 , 0 x f f f f f f a c (r2)
300: 84 62 f f b0 l . lwz r3 , 0 x f f f f f f b 0 (r2)
304: e0 84 18 00 l . add r4 , r4 , r3
308: d7 e2 27 a8 l . sw 0 x f f f f f f a 8 (r2) , r4
30 c : 84 82 f f a8 l . lwz r4 , 0 x f f f f f f a 8 (r2)
310: 84 84 00 00 l . lwz r4 , 0 x0 (r4)
314: d7 e2 27 e4 l . sw 0 x f f f f f f e 4 (r2) , r4
318: 84 62 f f e4 l . lwz r3 , 0 x f f f f f f e 4 (r2)
31 c : 9c 63 00 05 l . add i r3 , r3 , 0 x5
320: d7 e2 1 f e8 l . sw 0 x f f f f f f e 8 (r2) , r3
324: 18 80 00 00 l . movhi r4 , 0 x0
328: a8 84 03 dc l . o r i r4 , r4 , 0 x3dc
32 c : d7 e2 27 a4 l . sw 0 x f f f f f f a 4 (r2) , r4
330: 84 62 f f dc l . lwz r3 , 0 x f f f f f f d c (r2)
334: b8 63 00 02 l . s l l i r3 , r3 , 0 x2
338: d7 e2 1 f a0 l . sw 0 x f f f f f f a 0 (r2) , r3
33 c : 84 82 f f a0 l . lwz r4 , 0 x f f f f f f a 0 (r2)
340: 84 62 f f a4 l . lwz r3 , 0 x f f f f f f a 4 (r2)
344: e0 84 18 00 l . add r4 , r4 , r3
348: d7 e2 27 9c l . sw 0 x f f f f f f 9 c (r2) , r4
34 c : 84 62 f f e8 l . lwz r3 , 0 x f f f f f f e 8 (r2)
350: 84 82 f f 9c l . lwz r4 , 0 x f f f f f f 9 c (r2)
354: d4 04 18 00 l . sw 0x0 (r4) , r3

}
i += 2 ;

358: 84 82 f f f c l . lwz r4 , 0 x f f f f f f f c (r2)
35 c : d7 e2 27 98 l . sw 0 x f f f f f f 9 8 (r2) , r4
360: 84 62 f f 98 l . lwz r3 , 0 x f f f f f f 9 8 (r2)
364: 9c 63 00 02 l . add i r3 , r3 , 0 x2
368: d7 e2 1 f 94 l . sw 0 x f f f f f f 9 4 (r2) , r3
36 c : 84 82 f f 94 l . lwz r4 , 0 x f f f f f f 9 4 (r2)
370: d7 e2 27 f c l . sw 0 x f f f f f f f c (r2) , r4

i f (i % 2 == 0) {
374: 84 62 f f f c l . lwz r3 , 0 x f f f f f f f c (r2)
378: d7 e2 1 f ec l . sw 0 x f f f f f f e c (r2) , r3
37 c : 84 82 f f ec l . lwz r4 , 0 x f f f f f f e c (r2)
380: a4 84 00 01 l . and i r4 , r4 , 0 x1
384: d7 e2 27 f0 l . sw 0 x f f f f f f f 0 (r2) , r4
388: 84 62 f f f0 l . lwz r3 , 0 x f f f f f f f 0 (r2)
38 c : bc 23 00 00 l . s f n e i r3 , 0 x0
390: 10 00 00 08 l . b f 3b0 <_main+0x180 >
394: 15 00 00 00 l . nop 0x0

i = Mult (1 0) ;
398: 9c 60 00 0a l . add i r3 , r0 , 0 xa
39 c : 07 f f f f 71 l . j a l 160 < _ _ s t a c k +0 x f f f f d 1 0 >
3a0 : 15 00 00 00 l . nop 0x0
3a4 : d7 e2 5 f f4 l . sw 0 x f f f f f f f 4 (r2) , r11
3a8 : 84 82 f f f4 l . lwz r4 , 0 x f f f f f f f 4 (r2)
3 ac : d7 e2 27 f c l . sw 0 x f f f f f f f c (r2) , r4

}
i f d e f SIM

e x i t _ s i m () ;
3b0 : 07 f f f f 95 l . j a l 204 < _ _ s t a c k +0 x f f f f d b 4 >
3b4 : 15 00 00 00 l . nop 0x0

e n d i f
re tu rn 0 ;

3b8 : 9c 60 00 00 l . add i r3 , r0 , 0 x0
3bc : d7 e2 1 f f8 l . sw 0 x f f f f f f f 8 (r2) , r3
3c0 : 84 82 f f f8 l . lwz r4 , 0 x f f f f f f f 8 (r2)
3c4 : d7 e2 27 d4 l . sw 0 x f f f f f f d 4 (r2) , r4

}
3c8 : 85 62 f f d4 l . lwz r11 , 0 x f f f f f f d 4 (r2)

A.1 Software development 154

3 cc : 85 21 00 00 l . lwz r9 , 0 x0 (r1)
3d0 : 84 41 00 04 l . lwz r2 , 0 x4 (r1)
3d4 : 44 00 48 00 l . j r r9
3d8 : 9c 21 00 74 l . add i r1 , r1 , 0 x74

A.1.3 Linker Script

/*************** L inke r S c r i p t to set−up t h e Memory−map**************** /
/*−−−−−−−−s t a r t u p . ld−−−−−−−−*/
/ *
* Setup t h e memory map of t h e Code .

* s t a c k grows down from high memory .

* −−

* The . t e x t s e c t i o n− c o n t a i n s i n s t r u c t i o n s

* The . d a t a s e c t i o n− c o n t a i n s s t a t i c i n i t i a l i z e d d a t a

* The . r d a t a s e c t i o n− c o n t a i n s s t a t i c c o n s t a n t d a t a

* The . bss s e c t i o n− c o n t a i n s u n i n i t i a l i z e d d a t a

* The . c t o r s e c t i o n− c o n t a i n s a d d r e s s e s of g l o b a l c o n s t r u c t o r s

* The . d t o r s e c t i o n− c o n t a i n s a d d r e s s e s of g l o b a l d e s t r u c t o r s

* The . s t a b s s e c t i o n− p a r t o f t h e debug symbol t a b l e

* The . s t a b s t r s e c t i o n− p a r t o f t h e debug symbol t a b l e

* −−

* The memory map look l i k e t h i s :

* +−−−−−−−−−−−−−−−−−−−−+ <− S t a r t o f ROM

* | I n t e r r u p t Tab le |

* +−−−−−−−−−−−−−−−−−−−−+ <− 0x100

* | . t e x t |

* | _ s t e x t |

* | * . t e x t |

* | _ e t e x t |

* +−−−−−−−−−−−−−−−−−−−−+ <− i n i t i a l i z e d d a t a goes here

* | . d a t a |

* | _ s d a t a |

* | * . d a t a |

* | _ s d a t a |

* +−−−−−−−−−−−−−−−−−−−−+ <− t h e c t o r and d t o r l i s t s a r ef o r
* | . r d a t a | C++ s u p p o r t (i f r e q u i e d)

* | * . r d a t a |

* | |

* +−−−−−−−−−−−−−−−−−−−−+ <− S t a r t o f RAM

* | | s t a r t o f bss , c l e a r e d by c r t 0

* | . bss | s t a r t o f heap

* | _ _ b s s _ s t a r t |

* | _end |

* +−−−−−−−−−−−−−−−−−−−−+

* . .

* . .

* . .

* | _ _ s t a c k |

* +−−−−−−−−−−−−−−−−−−−−+ <− t op of s t a c k

* /

STACKSIZE = 0x100 ;
OFFSET = 0x0 ;

/ * The nex t l i n e in t h e s c r i p t g i v e s a va lue to t h e l i n k e r symbol __ s t a c k .* /

PROVIDE (_ _ s t a c k = ADDR(. bss) + SIZEOF (. bss) + STACKSIZE + OFFSET) ;
PROVIDE (_ _ c o p y _ s t a r t = _ c o p y _ s t a r t) ;
PROVIDE (__copy_end = _copy_end) ;
PROVIDE (__copy_adr = _copy_adr) ;

A.1 Software development 155

MEMORY
{

rom (rx) : ORIGIN = 0x00000000 , LENGTH = 0 x000f0000
ram (rwx) : ORIGIN = 0 xf0000000 , LENGTH = 0 x000f0000

}

SECTIONS
{

. t e x t 0x100 :
{

_ s t e x t = . ;

* (. t e x t)
_ e t e x t = . ;

} > rom
/ *

A l l i n i t i a l i z e d d a t a s e c t i o n s go in t h e RAM. Don ’ t f o r g e t to
w r i t e a d d i t i o n a l code to i n t i a l i z e t h e s e s e c t i o n s . B e t t e r
s t i l l , i n c l u d e e x p l i c i t i n i t i a l i z a t i o n code in your
a p p l i c a t i o n program .

* /
. d a t a : {

_ c o p y _ s t a r t = . ;
_ s d a t a = . ;

* (. d a t a)
_eda ta = . ;

} > rom

. r d a t a :
{

* (. r d a t a)
_copy_end = . ;

/ *
I n c l u d e any C++ g l o b a l c o n s t r u c t o r s . I f you ’ re no t us ing
C++ then you can d e l e t e t h i s code .

* /
__CTOR_LIST__ = . ;
LONG((__CTOR_END__− __CTOR_LIST__) / 4− 2)

* (. c t o r s)
LONG(0)
__CTOR_END__ = . ;

/ *
I n c l u d e any C++ g l o b a l d e s t r u c t o r s . You can d e l e t e
t h i s too .

* /
__DTOR_LIST__ = . ;
LONG((__DTOR_END__− __DTOR_LIST__) / 4− 2)

* (. d t o r s)
LONG(0)
__DTOR_END__ = . ;

} > rom
/ *

The . bss s e c t i o n s , which a r e u n i n i t i a l i z e d in t h esource and
s e t t o ze ro a t run t ime , a r e l o c a t e d in RAM a f t e r t h e . d a t a
s e c t i o n s . Beyond t h e end of t h e . bss s e c t i o n s a r e t h e
heap and s t a c k .

* /
. bss (NOLOAD) :
{

_copy_adr = . ;
. = (SIZEOF (. d a t a) + SIZEOF (. r d a t a)) ;
_ _ b s s _ s t a r t = . ;

* (. bss)

* (COMMON)
end = ALIGN(0 x2) ;

A.1 Software development 156

_end = ALIGN(0 x2) ;
} > ram

/ *
Debug symbol t a b l e s a r e no t loaded , bu tdo need to g e t
l i n k e d wi th t h e r e s t o f t h e program .

* /
. s t a b 0 (NOLOAD) :
{

[. s t a b]
}

. s t a b s t r 0 (NOLOAD) :
{

[. s t a b s t r]
}

}

A.1.4 Startup Script

/*−−−−−−−−S t a r t u p S c r i p t to i n c l u d e e x p l i c i t i n i t i a l i z a t i o n code−−−−−−−−*/
/*−−−−−−−−s t a r t u p . S−−−−−−−−*/

. e x t e r n _ _ s t a c k

. e x t e r n _ _ c o p y _ s t a r t

. e x t e r n __copy_end

. e x t e r n __copy_adr

/ * Core jumps here a t s t a r t and r e s e t* /
_ s t e x t :

/ * S tack i n i t i a l i z a t i o n * /
l . movhi r1 , h i (_ _ s t a c k)
l . o r i r1 , r1 , l o (_ _ s t a c k)

_mem_data_copy :
/ * Copy t h e i n i t i a l a t e d d a t a and s t a t i c v a r i a b l e s from Rom to Ram * /
l . movhi r3 , h i (__copy_adr)
l . o r i r3 , r3 , l o (__copy_adr)
l . movhi r4 , h i (_ _ c o p y _ s t a r t)
l . o r i r4 , r4 , l o (_ _ c o p y _ s t a r t)
l . movhi r5 , h i (__copy_end)
l . o r i r5 , r5 , l o (__copy_end)
l . sub r5 , r5 , r4
l . s f e q i r5 , 0
l . b f _jump_main
l . nop

_mem_data_loop :
l . lwz r6 , 0 (r4)

l . sw 0(r3) , r6
l . add i r3 , r3 , 4
l . add i r4 , r4 , 4
l . add i r5 , r5 ,−4
l . s f g t s i r5 , 0
l . b f _mem_data_loop
l . nop

/ * Jump to Main * /
_jump_main :

l . movhi r2 , h i (_main)
l . o r i r2 , r2 , l o (_main)

A.1 Software development 157

l . j r r2
l . nop

A.1.5 A Sample Makefile

/ * * * * * * Make f i l e to compi le t h e a p p l i c a t i o n programs wi th t h e OR1200 GNU
T oo lcha in***** * /
Names
EXECUTABLE = o u t p u t
MAIN_FILE = main . c
LINKER_SCRIPT_NAME = s t a r t u p . ld
SIM_CONFIG_FILE = cpu . c fg

S_FILES = $ (w i l d c a r d * . S)
C_FILES = $ (f i l t e r−ou t $ (MAIN_FILE) , $ (w i l d c a r d * . c))
O_FILES = $ (S_FILES :%. S=%.o) $ (C_FILES :%. c=%.o)

DELETE = $ (EXECUTABLE) $ (EXECUTABLE) . l s t $ (EXECUTABLE) .ihx $ (w i l d c a r d * . o)

GCC, LD, OBJDUMP
e x p o r t PATH="$PATH : / op t / or32−e l f / b in "

CC = or32−e l f −gcc
LD = or32−e l f −l d
OD = or32−e l f −objdump
OC = or32−e l f −ob jcopy
SIZE = or32−e l f −s i z e
SIM = or32−e l f −sim

FLAGS
DEBUG_ON_OFF =−g s t a b s 3
OPTIMIZE_LEVEL =
#−O1 −O2 −O3 −Os − f i n l i n e − f u n c t i o n s
FLAGS = −n o s t a r t f i l e s −mhard−d iv −mhard−mul −I . −W −Wall
CFLAGS = $ (DEBUG_ON_OFF) $ (OPTIMIZE_LEVEL) $ (FLAGS)

.PHONY : a l l c l e a n

a l l : $ (EXECUTABLE)

$ (EXECUTABLE) : $ (O_FILES)
Create e x e c u t a b l e

$ (CC) $ (CFLAGS) −T $ (LINKER_SCRIPT_NAME) $^−o $@ $ (MAIN_FILE)
$ (OD) −S −h $@ > $@. l s t
$ (OC) −O ihex $@ $@. ihx
$ (SIZE) $@−A −−r a d i x =16

. c . o :
Create Object− f i l e s o f c

$ (CC) $ (CFLAGS) −c $^

. S . o :
Create Object− f i l e s o f assemb le r

$ (CC) $ (CFLAGS) −c $^

sim :
$ (SIM) −f $ (SIM_CONFIG_FILE) $ (EXECUTABLE)

Remove F i l e s
c l e a n :

rm − r f $ (DELETE)

A.2 Functional Verification of the OR1200 core 158

A.2 Functional Verification of the OR1200 core

A.2.1 Empty ELF file

BITS 32
org 0 x08048000

ehdr : ; E l f32_Ehdr
db 0x7F , "ELF" , 1 , 1 , 1 , 0 ; e _ i d e n t

t imes 8 db 0
dw 2 ; e_ type
dw 3 ; e_machine
dd 1 ; e _ v e r s i o n
dd _ s t a r t ; e _ e n t r y
dd phdr − $$; e_pho f f
dd 0 ; e _ s h o f f
dd 0 ; e _ f l a g s
dw e h d r s i z e ; e _ e h s i z e
dw p h d r s i z e ; e _ p h e n t s i z e
dw 1 ; e_phnum
dw 0 ; e _ s h e n t s i z e
dw 0 ; e_shnum
dw 0 ; e _ s h s t r n d x

e h d r s i z e equ $− ehdr
phdr : ; E l f32_Phdr

dd 1 ; p_type
dd 0 ; p _ o f f s e t
dd $$; p_vaddr
dd $$; p_paddr
dd f i l e s i z e ; p _ f i l e s z
dd f i l e s i z e ; p_memsz
dd 5 ; p _ f l a g s
dd 0x1000 ; p _ a l i g n

p h d r s i z e equ $− phdr
_ s t a r t :
f i l e s i z e equ $− $$

A.2.2 Configuration File for the Or1ksim Library

/ * −−−

*
* Th is f i l e i s p a r t o f OpenRISC 1000 A r c h i t e c t u r a l S i m u l a t o r .I t c o n t a i n s

* t h e c o n f i g u r a t i o n s u i t a b l ef o r r unn ing t h e s im p le SoC .

*
* For e x p l a n a t i o n of t h e d i f f e r e n t f i e l d s , see t h e d e f a u l t s i mu l a t i o n

* c o n f i g u r a t i o n f i l e s u p p l i e d wi th t h e Or1ksim (sim . c fg) .

*
* The " g e n e r i c " s e c t i o n i s an e x t e n s i o n to t h e Or1ksim to s u p p or t model ing of

* e x t e r n a l p e r i p h e r a l s .

*
* $ Id$

*
* /

s e c t i o n g e n e r i c
enab led = 1
baseaddr = 0 x00000000
s i z e = 0x7FFFFFFF
b y t e _ e n a b l e d = 1
hw_enabled = 1

A.2 Functional Verification of the OR1200 core 159

word_enab led = 1
name = " Gen_dev1 "

end

s e c t i o n g e n e r i c
enab led = 1
baseaddr = 0 x80000000
s i z e = 0 x80000000
b y t e _ e n a b l e d = 1
hw_enabled = 1
word_enab led = 1
name = " Gen_dev2 "

end

/ * To cover addr = 0xFFFFFFFF * /
/ *
s e c t i o n g e n e r i c

enab led = 1
baseaddr = 0xFFFFFFFF
s i z e = 0 x00000001
b y t e _ e n a b l e d = 1
hw_enabled = 1
word_enab led = 1
name = " Gen_dev3 "

end

* /
s e c t i o n sim

verbose = 0
debug = 0
p r o f i l e = 0
h i s t o r y = 0
c l k c y c l e = 10 ns

end

s e c t i o n cpu
ver = 0x1200
rev = 0x0001
s u p e r s c a l a r = 0
h a z a r d s = 0
d e p e n d s t a t s = 0
s b u f _ l e n = 0

end

/ * D isab led S e c t i o n s . The f i r s t two need a l l t h e i r a d d i t i o n a l fi e l d s due
to a bug in Or1ksim * /

s e c t i o n i c
enab led = 0
n s e t s = 512
nways = 1
b l o c k s i z e = 16
h i t d e l a y = 20
m issde lay = 20

end

s e c t i o n dc
enab led = 0
n s e t s = 512
nways = 1
b l o c k s i z e = 16
l o a d _ h i t d e l a y = 20
l o a d _ m i s s d e l a y = 20
s t o r e _ h i t d e l a y = 20
s t o r e _ m i s s d e l a y = 20

end

A.2 Functional Verification of the OR1200 core 160

s e c t i o n immu
enab led = 0

end

s e c t i o n dmmu
enab led = 0

end

s e c t i o n VAPI
enab led = 0

end

s e c t i o n dma
enab led = 0

end

s e c t i o n pm
enab led = 0

end

s e c t i o n bpb
enab led = 0

end

s e c t i o n debug
enab led = 0

end

s e c t i o n u a r t
enab led = 0

end

s e c t i o n e t h e r n e t
enab led = 0

end

s e c t i o n gp io
enab led = 0

end

s e c t i o n a t a
enab led = 0

end

s e c t i o n vga
enab led = 0

end

s e c t i o n fb
enab led = 0

end

s e c t i o n kbd
enab led = 0

end

s e c t i o n mc
enab led = 0

end

A.2 Functional Verification of the OR1200 core 161

A.2.3 Modifications in the ISS

Following list of modifications we made in the ISS (Or1ksim) to use it as a golden model for the
simulation-based verification of the OR1200 core.

/ * *** s imp le . c f g*** * /
/ * a . Gener ic p e r i p h e r a l mapping f o r comp le te 32− b i t add ress space (Append ix (A . 2 . 2)) .* /

/ * *** Or1ksim . h*** * /
/ * a . A d d i t i o n o f a f u n c t i o n p o i n t e r f o r t h i r d u p c a l l i . e . , upcpus ta tus , in t h e

o r 1 k s i m _ i n i t () d e c l a r a t i o n .* /
i n t o r 1 k s i m _ i n i t (cons t char * c o n f i g _ f i l e ,

cons t char * i m a g e _ f i l e ,
vo id * c l a s s _ p t r ,
unsigned long i n t (* upr) (vo id * c l a s s _ p t r , unsigned long i n t addr ,

unsigned long i n t mask) ,
vo id (* upw) (vo id * c l a s s _ p t r , unsigned long i n t addr , unsigned long

i n t mask , unsigned long i n t wdata) ,
vo id (* u p c p u s t a t u s) (vo id * c l a s s _ p t r , vo id * c p u _ s t a t u s P t r)) ;

/ * *** l i b t o p l e v e l . c*** * /
/ * a . In t h e d e f i n a t i o n o f o r 1 k s i m _ i n i t () .

i . Add f u n c t i o n p o i n t e r argument f o r t h i r d u p c a l l i . e . , u p c pu s t a t u s () .
. . . vo id (* u p c p u s t a t u s) (vo id* c l a s s _ p t r , vo id * c p u _ s t a t u s P t r)) ;

i i . A ss ign u p c a l l p o i n t e r to a f u n c t i o n p o i n t e r which can be accessed w i t h i n t h e ISS
. * /
c o n f i g . e x t .w r i t e _ u p _ c p u s t a t u s= u p c p u s t a t u s

/ * *** sim−c o n f i g . h*** * /
/ * a . Add a f u n c t i o n p o i n t e r w r i t e _ u p _ c p u s t a t u s () i n data s t r uc t u r e f o r c o n f i g u r a t i o n

data* /
s t r u c t c o n f i g {

s t r u c t { / * E x t e r n a l l i n k a g e f o r SystemC* /
vo id * c l a s s _ p t r ;
unsigned long i n t (* read_up) (vo id * c l a s s _ p t r ,

unsigned long i n t addr , unsigned long i n t mask) ;
vo id (* w r i te_up) (vo id * c l a s s _ p t r , unsigned long i n t addr ,

unsigned long i n t mask , unsigned long i n t wdata) ;
vo id (* w r i t e _ u p _ c p u s t a t u s) (vo id * c l a s s _ p t r , vo id * c p u _ s t a t u s P t r) ;

} e x t ;

/ * b . A d d i t i o n o f a data s t r u c t u r e to ho ld a vo id f u n c t i o n p o i n t er f o r w r i t i n g cpu s t a t e
when u p c a l l* /

s t r u c t e x t _ a c c e s s _ c p u _ s t a t u s {
vo id (* w r i t e _ c p u s t a t u s _ u p) (vo id *) ; } ;

extern s t r u c t e x t _ a c c e s s _ c p u _ s t a t u s c p u s t a t u s _ u p ;

/ * *** sim−c o n f i g . c*** * /
a . s t r u c t e x t _ a c c e s s _ c p u _ s t a t u s c p u s t a t u s _ u p ;
b . c o n f i g . e x t .w r i t e _ u p _ c p u s t a t u s= NULL;

/ * *** g e n e r i c . c*** * /
/ * a . Gener ic w r i t e s t a t u s u p c a l l r o u t i n e .* /
s t a t i c vo id e x t _ w r i t e _ c p u s t a t u s (vo id * c p u _ s t a t u s P t r) {

c o n f i g . e x t .w r i t e _ u p _ c p u s t a t u s(c o n f i g . e x t . c l a s s _ p t r , c p u _ s t a t u s P t r) ;
} / * e x t _ c a l l b a c k () * /

/ * b . In g e n e r i c _ s e c _ s t a r t () .* /
c p u s t a t u s _ u p . w r i t e _ c p u s t a t u s _ u p = e x t _ w r i t e _ c p u s t a t u s;

/ * *** e x e c u t e . c*** * /
/ * a . Ca l l w r i t e _ c p u s t a t u s _ u p () u p c a l l a f t e r eve ry i n s t r u c t io n e x e c u t i o n to w r i t e t h e

ISS s t a t e up .* /
c p u s t a t u s _ u p . w r i t e _ c p u s t a t u s _ u p (& c p u _ s t a t e) ;

A.3 ISS implementation of instructionsl.jalr andl.jr 162

A.3 ISS implementation of instructionsl.jalr andl.jr

/ * ******* execgen . c****** * /

L . JR :
case 0x11 :

/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 0 0 0 and c u r r e n t mask fc000000 d i f f e r − do f i n a l
check * /

i f ((i n s n & 0 xfc000000) == 0x44000000) {
/ * I n s t r u c t i o n : l . j r * /
{

u o r r e g _ t a ;
/ * Number o f operands : 1* /
a = (i n s n >> 11) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
{ / * " l _ j r " * /

c p u _ s t a t e . pc_de lay = PARAM0;
n e x t _ d e l a y _ i n s n = 1 ;
i f (c o n f i g . sim . p r o f i l e)

f p r i n t f (r un t im e . sim . fp ro f , "−%08l lX %"PRIxADDR" \ n " , run t im e . sim . cyc les ,
c p u _ s t a t e . pc_de lay) ;

}
undef SET_PARAM
undef PARAM0

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 104; / * " l . j r " * /
a n a l y s i s (c u r r e n t) ;

}
}

} e l s e {
/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
}

}
break ;

L . JALR :

case 0x12 :
/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 0 0 0 and c u r r e n t mask fc000000 d i f f e r − do f i n a l

check * /
i f ((i n s n & 0 xfc000000) == 0x48000000) {

/ * I n s t r u c t i o n : l . j a l r * /
{

u o r r e g _ t a ;
/ * Number o f operands : 1* /
a = (i n s n >> 11) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
{ / * " l _ j a l r " * /

c p u _ s t a t e . pc_de lay = PARAM0;
s e t s i m _ r e g (LINK_REGNO, c p u _ s t a t e . pc + 8) ;
n e x t _ d e l a y _ i n s n = 1 ;

}

A.3 ISS implementation of instructionsl.jalr andl.jr 163

undef SET_PARAM
undef PARAM0

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 105; / * " l . j a l r " * /
a n a l y s i s (c u r r e n t) ;

}
}

} e l s e {
/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
}

}
break ;

A.4 ISS implementation of instructionl.mtspr

/ * ********* execgen . c********* * /

case 0x30 :
/ * Not un ique : r e a l mask f f f f f f f f f c 0 0 0 0 0 0 and c u r r e n t mask fc000000 d i f f e r − do f i n a l

check * /
i f ((i n s n & 0 xfc000000) == 0 xc0000000) {

/ * I n s t r u c t i o n : l . mtspr * /
{

u o r r e g _ t a , b , c ;
/ * Number o f operands : 3* /
a = (i n s n >> 16) & 0 x1f ;
d e f i n e SET_PARAM0(v a l) c p u _ s t a t e . reg [a] = v a l
d e f i n e PARAM0 c p u _ s t a t e . reg [a]
b = (i n s n >> 11) & 0 x1f ;
d e f i n e PARAM1 c p u _ s t a t e . reg [b]
c = (i n s n >> 0) & 0 x 7 f f ;
c | = ((i n s n >> 21) & 0 x1f) << 11 ;
d e f i n e PARAM2 c
{ / * " l _m tsp r " * /

u i n t 1 6 _ t regno = PARAM0 + PARAM2;
u o r r e g _ t va lue = PARAM1;

i f (c p u _ s t a t e . s p r s [SPR_SR] & SPR_SR_SM)
mtspr (regno, va lue) ;

e l s e {
PRINTF ("WARNING: t r y i n g to w r i t e SPR wh i le SR[SUPV] i s c l e ar e d . \ n ") ;
s im_done () ;

}
}
undef SET_PARAM
undef PARAM0
undef PARAM1
undef PARAM2

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = 139; / * " l . mtspr " * /
a n a l y s i s (c u r r e n t) ;

}
}

} e l s e {
/ * I n v a l i d i n s n * /
{

l _ i n v a l i d () ;

i f (d o _ s t a t s) {
c u r r e n t−>i n s n _ i n d e x = −1; / * "???" * /
a n a l y s i s (c u r r e n t) ;

}
}

}
break ;

164

Bibliography

[1] M. C. M. Eftimakis, “High-speed serial fully digital interface be-
tween wlan rf and bb chips,” June 2005. [Online]. Available:
http://www.eurasip.org/Proceedings/Ext/IST05/papers/515.pdf

[2] J. v. d. L. A. v. R. A. Vidojkovic, V Tang,Adaptive Multi-Standard RF Front-Ends. Springer,
2008.

[3] M. C. Daniel Mattsson, “Evaluation of synthesizable cpucores,” Mas-
ter’s thesis, Chalmer Univeristy od Technology, 2004. [Online]. Available:
http://www.gaisler.com/doc/Evaluation_of_synthesizable_CPU_cores.pdf

[4] R. Herveille, WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, OpenCores Organization, September 2002. [Online]. Available:
http://www.opencores.org/downloads/wbspec_b3.pdf

[5] OpenCores,User’s Manual Wishbone Builder, OpenCores Organization. [Online]. Available:
http://www.opencores.org/project,wb_builder,downloads

[6] A. E. Olle Seger, Per Karlström,Laboratory manual for TSEA02, Department of
Electrical Engineering Linköping University, Sweden, October 2007. [Online]. Available:
https://mail.cs.pub.ro/~laurentiu.duca/openrisc/labkomp.pdf

[7] J. H. Bahn, “Overview of network on chip.” [Online]. Available:
http://gram.eng.uci.edu/comp.arch/lab/NoCOverview.htm

[8] B. T. William DALLY, Principles and Practices of Interconnection Networks. morgan
kaufmann publishers, 2003. [Online]. Available:http://cva.stanford.edu/books/ppin/

[9] D. Lampret,OpenRISC 1200 IP Core Specification, rev 0.2 ed., OpenCores, 6 september 2001.
[Online]. Available:http://www.da.isy.liu.se/courses/tsea44/OpenRISC/or1200_spec.pdf

[10] OpenRISC 1200 RISC/DSP core, OpenCore.org. [Online]. Available:
http://docs.huihoo.com/openrisc/openrisc1200-overview.pdf

[11] D. Lampart, OpenRISC 1000 Architecture Manual, OpenCores, April 5 2006. [Online].
Available: http://www.opencores.org/openrisc,architecture

165

http://www.eurasip.org/Proceedings/Ext/IST05/papers/515.pdf
http://www.gaisler.com/doc/Evaluation_of_synthesizable_CPU_cores.pdf
http://www.opencores.org/downloads/wbspec_b3.pdf
http://www.opencores.org/project,wb_builder,downloads
https://mail.cs.pub.ro/~laurentiu.duca/openrisc/labkomp.pdf
http://gram.eng.uci.edu/comp.arch/lab/NoCOverview.htm
http://cva.stanford.edu/books/ppin/
http://www.da.isy.liu.se/courses/tsea44/OpenRISC/or1200_spec.pdf
http://docs.huihoo.com/openrisc/openrisc1200-overview.pdf
http://www.opencores.org/openrisc,architecture

BIBLIOGRAPHY 166

[12] OpenCores, “Openrisc1200 rtl source code.”

[13] S. G. Kapil Anand, “Designing of customized signal pro-
cessor,” Master’s thesis, IIT, May 2007. [Online]. Available:
http://www.cse.iitd.ernet.in/esproject/homepage/release/or1200vector/pdfs/BTP_THESIS.pdf

[14] O. Seger, “A soft somputer.” [Online]. Available:
http://www.da.isy.liu.se/courses/tsea44/coursemtrl_08/4-Computer-Ny.pdf

[15] M. E. J. B. Jeremy Bennett, Rich D’Addio,OR1200 GNU Toolchain, Opencores. [Online].
Available: http://www.opencores.org/openrisc,gnu_toolchain

[16] J. Bennett, The OpenCores OpenRISC 1000 Simulator and Tool
Chain, Embecosm Limited, November 2008. [Online]. Available:
http://www.embecosm.com/appnotes/ean2/html/index.html

[17] ——, Or1ksim User Guide, Embecosm, 2009. [Online]. Available:
http://www.opencores.org/openrisc,or1ksim

[18] Embecosm, The Or1ksim Simulator, Embecosm. [Online]. Available:
http://www.embecosm.com/appnotes/ean2/html/ch03s07.html

[19] M. Pfaff, Advanced Methods of Verification, 2008.

[20] S. Imam,Step-by-Step Functional Verification with SystemVerilog and OVM. Hansen Brown
Publishing Company, 2008.

[21] D. T. Kropf, Introduction to Formal Hardware Verification. Springer, 1999.

[22] Cadence,Open Verification Methodology User Guide, version 2.0 ed., Cadence Design
System, September 2008. [Online]. Available:http://www.ovmworld.org/

[23] J. Bennett, Building a Loosly Timed SoC Model with OSCI
TLM2.0, 1st ed., EMBECOSM, June 2008, 1. [Online]. Available:
http://www.embecosm.com/appnotes/ean1/sysc_tlm2_simple_or1k.pdf

[24] SystemC,SystemC User Guide, version 2.0 ed., SystemC.org, 2002. [Online]. Available:
http://www.cse.iitd.ernet.in/~panda/SYSTEMC/LangDocs/UserGuide20.pdf

[25] Accellera, SystemVerilog 3.1a Language Reference Manual, Accellera, 2003. [Online].
Available: http://www.vhdl.org/sv/SystemVerilog_3.1a.pdf

[26] Gorlak, “A whirlwind tutorial on creating really teensy elf executables for linux.” [Online].
Available: http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

[27] M. Graphics,ModelSim User’s Manual, Mentor Graphics, May 2008. [Online]. Available:
http://www.actel.com/documents/modelsim_ug.pdf

http://www.cse.iitd.ernet.in/esproject/homepage/release/or1200vector/pdfs/BTP_THESIS.pdf
http://www.da.isy.liu.se/courses/tsea44/coursemtrl_08/4-Computer-Ny.pdf
http://www.opencores.org/openrisc,gnu_toolchain
http://www.embecosm.com/appnotes/ean2/html/index.html
http://www.opencores.org/openrisc,or1ksim
http://www.embecosm.com/appnotes/ean2/html/ch03s07.html
http://www.ovmworld.org/
http://www.embecosm.com/appnotes/ean1/sysc_tlm2_simple_or1k.pdf
http://www.cse.iitd.ernet.in/~panda/SYSTEMC/LangDocs/UserGuide20.pdf
http://www.vhdl.org/sv/SystemVerilog_3.1a.pdf
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html
http://www.actel.com/documents/modelsim_ug.pdf

Appendix B
List of Acronyms

DSP Digital Signal Processor

SoC System on Chip

IHex Intel Hexadecimal File format

ROM Read Only Memory

RAM Random Access Memory

OR1200 OpenRISC1200

ISS Instruction Set Simulator

OVM Open Verification Methodology

DPI Direct Programming Interface

DUV Design Under Verification

CDV Coverage Driven Verification

IVC Interface Verification Component

MVC Module Verification Component

SVC System Verification Component

OVC Open Verification Component

VE Verification Environment

BFM Bus Functional Model

TLM Transaction Level Modeling

PC Program Counter

167

168

SR Supervision Register

ESR Exception Supervision Register

EPCR Exception Program Counter Register

EEAR Exception Effective Address Register

EA Effective Address

CPU Central Processing Unit

ALU Arithmetic and Logic Unit

LSU Load Store Unit

MAC Multiply Accumulate Unit

IC Instruction Cache

DC Data Cache

IM Instruction Memory

DM Data Memory

IMMU Instruction Memory Management Unit

DMMU Data Memory Management Unit

RTL Register Transfer Level

ORBIS32 OpenRISC Basic Instruction Set

RFE Return From Exception

GPR General Purpose Register

IWB Instruction Wishbone Interface

DWB Data Wishbone Interface

IF Instruction Fetch

ID Instruction Decode

EX Instruction Execute

WB Write Back

RF Register File

NOP No Operation

TLM Transaction Level Modeling

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	2 System Environment and Organization
	2.1 Introduction
	2.2 System Description
	2.2.1 Overview
	2.2.2 Advanced Control Architecture for Multimode RF Transceivers
	2.2.3 Structural Design of the CPU Subsystem
	2.2.4 Classification of the Project Objectives

	2.3 Wishbone Interconnection Standard
	2.3.1 Overview
	2.3.2 Wishbone Interface Specifications
	2.3.3 Maximum Throughput Constraints on the Wishbone

	2.4 Memory System of the CPU Subsystem
	2.4.1 Overview
	2.4.2 Random Access Memory (RAM)
	2.4.3 Read Only Memory (ROM)

	2.5 Triple-layer Sub-bus System
	2.5.1 Overview
	2.5.2 Sub-bus Specifications
	2.5.3 Sub-bus Architecture
	2.5.4 Fundamental Characteristics of Sub-bus

	2.6 The OpenRISC1200 Processor
	2.6.1 General Description
	2.6.2 Performance
	2.6.3 The OpenRISC1200 Architecture
	2.6.4 Central Processing Unit (CPU/DSP)
	2.6.5 OpenRISC1200 Instruction Pipeline

	2.7 Maximum Throughput Restrictions on Subsystem
	2.8 Simulation Framework
	2.8.1 Overview
	2.8.2 OpenRISC1200 GNU Toolchain
	2.8.3 Simulation Setup for the CPU Subsystem

	3 Verification Fundamentals
	3.1 Introduction
	3.2 Functional Verification
	3.2.1 General Description
	3.2.2 Verification Approaches
	3.2.3 Verification Challenges

	3.3 Verification Technologies
	3.3.1 Overview
	3.3.2 Simulation-based Verification
	3.3.3 Formal Verification
	3.3.4 Formal Verification vs Simulation-based Verification

	3.4 Verification Methodologies
	3.5 Verification Cycle
	3.6 Verification Environment
	3.6.1 Introduction
	3.6.2 Interface Verification Component (IVC)
	3.6.3 Module/System Verification Component

	3.7 Open Verification Methodology (OVM)
	3.7.1 Introduction
	3.7.2 OVM and Coverage Driven Verification (CDV)
	3.7.3 OVM Test bench and Environments

	3.8 OVM Class Library
	3.8.1 Transaction-level Modeling (TLM)

	3.9 SystemC
	3.10 SystemVerilog Direct Programming Interface (DPI)
	3.10.1 Overview

	4 Functional Verification of CPU Subsystem
	4.1 Introduction
	4.2 Functional Verification of Memory System
	4.2.1 Verification plan
	4.2.2 Test Bench

	4.3 Functional Verification of Triple-layer Sub-bus
	4.3.1 Verification plan
	4.3.2 Test bench

	4.4 Functional Verification of OR1200 Core
	4.4.1 Verification plan
	4.4.2 Instruction Set Simulator as a Reference Model
	4.4.3 SystemC Wrapper around Reference Model
	4.4.4 SystemVerilog Wrapper around OR1200 Core

	4.5 Verification Environment for OR1200 Core
	4.5.1 Description
	4.5.2 Main Test Bench for OR1200 Core

	5 Results
	5.1 Introduction
	5.2 CPU Subsystem Simulations Results
	5.2.1 Overview
	5.2.2 Execution Results
	5.2.3 Maximum Throughput Results

	5.3 Memory System Verification Results
	5.3.1 Overview
	5.3.2 RAM Verification Results

	5.4 Sub-Bus System Verification Results
	5.4.1 Overview
	5.4.2 Tests Stimuli Execution
	5.4.3 Sub-Bus Verification Coverage Results

	5.5 OpenRISC1200 Error Reports
	5.5.1 Overview
	5.5.2 Extend Half Word with Sign (l.exths) Instruction
	5.5.3 Add Signed and Carry (l.addc) Instruction
	5.5.4 Divide Signed (l.div) Instruction
	5.5.5 Find Last 1 (l.fl1) Instruction
	5.5.6 Multiply Immediate Signed and Accumulate (l.maci) Instruction
	5.5.7 Multiply Immediate Signed (l.muli) Instruction
	5.5.8 Multiply Unsigned (l.mulu) Instruction
	5.5.9 Unimplemented Overflow Flag (OV)

	5.6 Discrepancies Between OR1200 and Golden Model
	5.6.1 Overview
	5.6.2 Jump Register and Link (l.jalr) and Jump Register (l.jr) Instructions
	5.6.3 Add Immediate Signed and Carry (l.addic) Instruction
	5.6.4 Load Single Word and Extend with Sign (l.lws) Instruction
	5.6.5 MAC Read and Clear (l.macrc) Instruction
	5.6.6 Rotate Right (l.ror) Instruction
	5.6.7 Rotate Right with Immediate (l.rori) Instruction
	5.6.8 Move to/from Special Purpose Registers (l.mtspr/l.mfspr)

	5.7 The OpenRISC1200 Verification Coverage Results
	5.7.1 Overview
	5.7.2 OR1200 Functional Verification Coverage

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Appendices
	A.1 Software development
	A.1.1 Test application program
	A.1.2 Disassembly file of the test program
	A.1.3 Linker Script
	A.1.4 Startup Script
	A.1.5 A Sample Makefile

	A.2 Functional Verification of the OR1200 core
	A.2.1 Empty ELF file
	A.2.2 Configuration File for the Or1ksim Library
	A.2.3 Modifications in the ISS

	A.3 ISS implementation of instructions l.jalr and l.jr
	A.4 ISS implementation of instruction l.mtspr

	Bibliography
	B List of Acronyms

