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ABSTRACT

IMPLEMENTATION AND VERIFICATION OF A CPU SUBSYSTEM FOR
MULTIMODE RF TRANSCEIVERS

Waqgas Ahmed
Department of ICT

Master of Science

Multimode transceivers are becoming a very popular implgateon alterna-
tive because of their ability to support several standarda single platform. For
multimode transceivers, advanced control architectueessguired to provide flex-
ibility, reusability, and multi-standard support at lowwper consumption and small
die area effort. In such an advance control architectur€Cfd Subsystem func-
tions as a central control unit which configures the travsceind the interface for
a particular communication standard.

Open source components are gaining popularity in the madaduse they not
only reduce the design costs significantly but also provalegs to the designer due
to the availability of the full source code. However, openrse architectures are
usually available as poorly verified and untested intelialgproperties (IPs). Before
they can be commercially adapted, an extensive testing erification strategy is
required. In this thesis we have implemented a CPU Subsyssémg open source
components and performed the functional verification of 8ubsystem. The main
components of this CPU Subsystem are (i) an open source OpEAROO core,
(i) a memory system, (iii) a triple-layer Sub-bus systerd &w) several Wishbone
interfaces. The OpenRISC1200 core was used because it idr &@e ideally
suited for applications requiring high performance whig&ing low-cost and low
power consumption. The verification of a 5-stage pipelirecpssor is a challeng-
ing task and to the best of our knowledge this is the first gitdmverify the Open-
RISC1200 core. The faults identified as a result of the fometi verification will
not only prove useful for the current project but will liketyake the OpenRISC1200
core a more reliable and commercially used processor.
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Chapter

Introduction

try in which high quality information can be transferred atispeed between

the portable devices located anywhere in the world. Appboa of wireless tech-
nology are everywhere including cell phones, home appéisnieleconferencing, satellite
communication and much more. However, the developmenteofrineless systems is a
considerable challenge.

Every device that incorporates wireless communicationclly comprises of three
core components: (i) the transceiver, (ii) the basebaralitiand (iii) the interface be-
tween them. Thdransceiveris a mixed-signal part of a wireless system whereas the
other two parts are typically digital components. Tiesebandncludes digital signal
processors (DSPs) and it mostly operates as a part of a cor8ptem on Chip (SoC).
Theinterfaceis an important component mainly used for the communicatiotata and
control-information between the transceiver and the basgltomponents. This control-
information contains the commands to control the transec&ichains (transmitter and re-
ceiver). In earlier days, the interfaces were implementedraanalog component of the
wireless systems. However, the integration of a wirelesgesy having an analog interface
within a complex SoC is a challenging task. A feasible solufor this problem is to use
the digital interfaces which are easier to integrate withencomplex systemd].

An RF transceivetypically comprises of a transmitter and a receiver. Thednaitter
modulates a digital signal, converts it to the analog domgdrconverts it to high frequen-
cies, amplifies the signal and transmits it. The receivekk&ar the opposite direction of
the transmitter. The receiver receives signals from therR&rma, conditions the low-level
signals, down-converts the high frequency signals to alamiermediate frequency (IF),
converts them into the digital domain and demodulates tH8mThe design and imple-
mentation of an RF transceiver block for wireless systenastisallenging task.

In recent times, several standards for the wireless coneation (e.g. GSM, UMTS,
LTE, WLAN) exist in the contemporary market. RF transcesvieave to process the sig-
nals according to the specifications of these standardssel$tandards include different
applications to provide different services to the cust@ndiodern communication stan-

WlRELEsscommunication is a rapidly growing division of communicetindus-

1



dards support numerous high speed applications. PreyjoR§l transceivers were de-
signed to support a single dedicated communication stdnaaere the main emphasis
of development was on cost effective solutio@ [Nevertheless, plentiful services are
presently available for the customers. Therefore, deweipp transceiver with a single

standard support is neither feasible nor beneficial. Hetheedevelopment of a single RF
transceiver supporting multiple wireless communicatiamdards is a natural solution e.g.,
a configurable transceiver to support GSM, UMTS and LTE wsslstandards. The main
advantages of the multi-standard approach are: (i) smabudia, (i) small PCB area, (iii)

less power consumption, (iv) less interconnections ane#@gjer to handle. Re-usability
of components is key goal of multi-standard solutions. Reuthe hardware components
while maintaining a satisfactory performance can sigmifilyareduce the cost (less man-
power, less verification efforts) of a development. A singldti-mode transceiver is much

more beneficial than several transceivers with single stahsupportZ, 2].

To support multiple communication standards, an RF tramscehould be reconfig-
urable so that it's transmitter and receiver chains can béigured to support a particular
standard. Hence, the main emphasis in the development ¢fstauhdard transceivers has
been directed towards improving hardware reusabilitypmégurability, programmability
and flexibility. The capability to support multiple commuoation standards makes the
transceivers very complex. Therefore, a compound logieéed to control and configure
them. This control logic resides within the transceiver andfigures it for a particular
standard. It is also responsible to control and monitor th@raunication between the
baseband and the transceiver over the interface. This expputs more demands on
the power and area apprehensions of the transceivers.efutis control logic itself has
to be reconfigurable and flexible for being capable to sugperimulti-mode transceivers.

Aside the easier integration, the digital interfaces adésipensable to support the con-
temporary high-speed communication standards. An advanti-mode transceiver ne-
cessitates a high-speed digital interface and a multitetbneconfigurable, programmable,
flexible, intelligent, fast and time accurate) control RgDICE GmbH & Co KG, Austria
is a daughter company affineon Technologies, Villach, Austria. It mainly focuses in the
designing of innovative, leading-edge Application-Sfiedntegrated Circuits (ASICs) for
the communications industry, particularly for the wira@soducts. An active group of the
company is working for the development of high-speed iam¥$ and control-architectures
for the multimode transceivers. The main objectives of é¢hamntrol architectures are to
provide maximum flexibility, reusability and multi-standa (existing and future) support
with low power and small die area. A flexible controlling logs one of the main require-
ments on the architectures. Programmable digital hardpams are used in the architec-
tures to provide the maximum flexibility.

The project this report discussestise i npl ementation and the verification
of a CPU Subsystem This CPU Subsystem is a robust component of a control archi-
tecture being developed in the company. It operates as aateontrol unit of this ar-
chitecture. Its foremost function is to configure the RF $i@iver and the interface for a
particular communication standard.

Typically costs are important factor in the industry. THere, we decided to use open



source components to implement this Subsystem. Moderrsindis also rapidly shifting
towards the cheap open source solutions. The performanea,aad power were also
significant concerns while implementing the Subsystem.

The goal of the project was to implement a low-cost CPU Subsysvith a satisfactory
performance and a comprehensive verification of its caness.

This report has been structured in chapters for the sintpkeid easiness. Brief infor-
mation about the contents of chapters has given below.

Chapter 2 briefly outlines the environment in which the CPU Subsystemleys. Fur-
thermore, this chapter sheds light on the operations of A8 Subsystem. It outlines
the specifications, constraints and objectives of thisgutojThis chapter also portrays the
methodology followed to accomplish these objectives. ltamtit briefly discusses some
basic concepts necessary to understand the implementétawever, the main emphasis
of this chapter is on the development of the CPU Subsysteniteicdmponents. Finally,
this chapter discusses the Software GNU Tool chain and #meion of the memory ini-
tialization file needed for the simulation of the Subsystem.

Chapter 3 gives a short introduction about the basic verification epts. It discuses
the different types of verification and evaluates the pdssliernatives to verify the CPU
Subsystem. Furthermore, this chapter also discussesfteredt technologies used for the
verification of the CPU Subsystem.

Chapter 4 discusses the verification plans and demonstrates thedashés used to
verify the memory system and the Sub-bus system. Furthisrctiapter describes the
framework and development of the test bench used for theiturad verification of the
OpenRISC120@ore.

Chapter 5 thoroughly discusses the results obtained from the funatigerification
of the memory system, the Sub-bus system, thenRISC120Gore. It also discusses the
results from the simulation of the CPU Subsystem. This a@ragiso outlines: (i) the
errors found in the @enRISC120Core, and (ii) the various discrepancies found between
the Golden Model and the@nRISC120&ore.

Chapter 6 concludes the thesis, highlights the future work and sugges possible
extensions.



Chapter 2

System Environment and Organization

2.1 Introduction

This chapter focuses on the implementation and the sinounla&ti the CPU Subsystem.
Section2.2 gives an overview about the environment of the CPU Subsysisanits op-
erations in it. This section also outlines the objectivethis thesis and a systematic ap-
proach to accomplish them. Secti@r8 introduces the Wishbone interconnection standard
which is essential to understand this project. This se@lsa sheds light on the maximum
throughput limitations of the Wishbone standard. Sec#igrexplains the implementation
of the memory system. Sectidh5 describes the development of a triple-layer Sub-bus
system. Sectio2.6 introduces the @enRISC120Qrocessor used as a central processing
unit within the CPU Subsystem. This section briefly desiihe main components of the
processor and its pipeline architecture. Secfiarexplains the maximum throughput limi-
tations of the CPU Subsystem. Sectibfdescribes the @nRISC120&oftware tool chain
and its installation. This section also discusses the g¢inarof memory initialization file
by using this tool chain. Finally, this section summarizesintegration of all components
to implement the CPU Subsystem and the simulation of a tegiram on it.

2.2 System Description

2.2.1 Overview

As discussed earlier, implementing a digital interface ractical solution to handle
the high-speed communication between a complex multim@desteiver and a modern
baseband-unit. A flexible and configurable control-ardtites is required to control the
multimode transceiver's chains (TX/RX), and to maneuver ¢tbmmunication between
the transceiver and the baseband-unit. This control<gctoire also configures the mul-
timode transceivers to activate a particular standard. RE Subsystem operates in a
control-architecture being developed to incorporate tldtimode RF transceivers. This

4



2.2 System Description 5

control-architecture is comprised of specialized adaptibus and distribution system, a
multicore debug system and the CPU Subsystem. The actuabtarchitecture is confi-
dential and cannot be discussed in detail. However, sonts @fnctionality related to the
CPU Subsystem has been summarized below.

2.2.2 Advanced Control Architecture for Multimode RF Transceivers

The advanced control architecture administers the comeation and configures the
transceiver through macros. These macros are small massageby the baseband unit
to the control architecture over the digital interface. Jémacroscontain the parameters
(e.g., channel number, band to be used) required to cohea@dmmunication, and to con-
figure the different units of the transceiver and the intafeDetail about the transceiver’s
units is beyond the scope of this report. The CPU Subsystegur@-[2.1]) is responsible
to decode the control macros to extract the control infoilonaand store the settings to
the different units of the transceiver. The Main-bus systdrthe architecture is used to
write the configuration macros to the memory (RAM) of the CRIUsy/stem. The central
processing unit (CPU) fetches the macros from the RAM anddiexthem to extract the
control settings. This process is called thigh-level macro processing hese settings are
stored into the transceiver’s units (RD/RX unit, RX/TX-Pkkc.) through the Main-bus
system of the control architecture. This complete processlied thepre-configuration
of the transceiver. After the pre-configuration, a timeetmate strobe macro is used to start
the sequencingof the transceiver’s units by using the pre-configured sgsti Thestrobe
macroshave very tough real-time requirements. Hence, they aredietin the hardware
and directly sent to the units.

The macro decoding itself does not have very hard real-tegqeirements. The CPU
Subsystem has a time-period to decode a macro and the dgowmdist be finished be-
fore that time. However, there are other real-time requinets on the chip e.g., the time
accurate strobe-macros, the power up/start of the RF chdiedilter etc.

CPU Subsystem

Sub bus (triple layer)

Main bus (single layer)

RAM ROM

Figure 2.1 CPU subsystem within advanced control architecture.

The macro’s decoding.
2The configuration of the transceiver by copying the decoe#ihg to the hardware registers.
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2.2.3 Structural Design of the CPU Subsystem

The CPU Subsystem shown in Figu&d] is consisted of a processor, a triple-layer Sub-
bus, several interfaces and the memories. Details abosg tt@mponents will be given
shortly.

Triple-layer Sub-Bus|
[ (Wishbone)

ROM

[ Rom_if |
| RoM_wb |

Core
DWB

OpenRISC12®

]
k=
=
©
8
o
>
o

RAM
=3

[ ram_if ]
[ RAM_wb |

Mbus_if
(master)

| Mbus_if |

(slavy

Figure 2.2 The CPU Subsystem.

This project can be divided into two major parts:
1. The implementation of the CPU Subsystem.
2. The verification of the CPU Subsystem and its components.

The implementation part includes the development of: (ijud-Bus system, (ii) a
memory system and (iii) the interfaces between all the comapts. Since implement-
ing a processor was beyond the scope of this project, a thiry processor was needed
which could function as a Central Processing Unit (CPU) mdhbsystem. The proces-
sor was also required to have the utilities like power mansegg, an interrupt controller,
a hardware timer and the debugging facility. After survegyiine open source market the
OpenRISC120@rocessor was a suitable choi@. [The GpenRISC120qOR1200) is a 32-
bit open source processor. It is ideally suited for the aapibns requiring higher perfor-
mance than 16-bit processors while having low-cost and lmmgs consumption advantage
compared to 64-bit processors. Additionally, it also supgpall the required utilities. The
target applications of the OR1200 processor are: (i) medinthhigh performance net-
working, (ii) embedded and automotive systems, (iii) ploltaand wireless applications,
and (iv) consumer electronics. The OR1200 core complieS\tisbbone interconnection
specifications to interact with the outer world. Therefat,peripherals have to follow
the Wishbone standard to interconnect with the OR1200 cbhe Wishboneas an open
source interconnection standard widely used in the ingusthe development of a low
cost SoC by using open source components is flourishing itdhéemporary industry.

The OR1200 core and the Wishbone interconnection stan@daellbeen discussed in sub-
sequent sections.
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2.2.4 Classification of the Project Objectives

The goal of the thesis is to implement a CPU Subsystem andligustive functional
verification. The most important part of any project is to defits scope and objectives in
order to identify the requirements. Since this project masdivisions, the objectives can
also be divided into two groups: (i) the implementation ahbjes and (i) the verification
objectives.

Implementation Objectives

The implementation includes the development of the CPU y&ibs using the OR1200
processor. Since the Subsystem has requirements of low @mdesmall die area design,
we decided not to use the caches (data and instruction) andé¢imory management units
(data and instruction) of the OR1200 core. The implememtatif the CPU Subsystem
consisted of the following milestones.

* The implementation of a CPU Subsystem without using theesieand the memory-
management of the OR1200 core with the characteristics)oftigh-performance,
(ii) low-power and (iii) small area.

» Achieve the single-cycle execution on the OR1200 core.

* The development of a triple-lay&ub-bus systemvith: (i) single-cycle access, (ii)
fixed-priority based arbitration and (iii) the interfacédaster/Slave) with the Wish-
bone standard. The implementation should be area and pdficezre.

» The implementation of memory systeincludes a Random Access Memory (RAM)
and a Read Only Memory (ROM). The implementation of the Wistebinterfaces
for both memories.

» The installation of the OR1200 GNU Toolchain (developmeatkit). The gener-
ation of the executable-files and the memory initializafiites (IHex) for the CPU
Subsystem by using the development toolkit.

» The integration of the CPU Subsystem and its simulationX®ceting sample pro-
grams on it.

Verification Objectives

The verification of the CPU Subsystem includes the functieeafication of. (i) the
OR1200 core, (ii) the Sub-bus system and (iii) the memoryesggROM/RAM). It also
includes the simulation-based verification of the CPU Sstesy. For the functional verifi-
cation of the OR1200 core itsstruction Set Simulator (ISS)’ was used as a golden model.
The verification of the CPU Subsystem consisted of followiripstones.

30ri1ksim is a generic OpenRISC1000 architectural simulator.
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» The development of a Bus functional model for the functlorexification of the
memory system.

» The development of a test bench for the functional verificedf the Sub-bus system.
» A simulation based verification of the CPU Subsystem.
* An exhaustive functional verification of the OR1200 core.

» The development of a SystemVerilog based wrapper aro@RiL200 core in order
to communicate with the core and to access its internalstatu

» The development of golden modefor the functional verification of the OR1200
core.

— Compile the ISS to a static library and develop the publierifiaices to access
it. These public interfaces are used by a system to interiglctthhe 1SS library.

— Develop a SystemC wrapper around the ISS library to accesaililic inter-
faces. Provide thBirect Programming Interface (DPI) within the wrapper.

» The development of a reconfigurable and reusable test hesioh theOpen Verifi-
cation Methodology (OVM).

Out of Scope

The tasks beyond the scope of this project are listed below:

» The verification of the OR1200 core includes only the treghboting of faults. It
does not include the alteration in the OR1200 core to rettiéyn.

» The development of application programs for the macro diegpis not part of work.

2.3 Wishbone Interconnection Standard

2.3.1 Overview

The Wishbone interconnection is an open standard for the behavior of interfaces that de-
scribes the protocol to exchange data between the IP @otaell property) cores. The
Wishbone standard does not provide the implementationeoirtterconnects. The actual
connections between the interfaces is up to the designées Wishbone interface proto-
col provides a reliable integration and easier reuse of dR¥evelop the large SoCs. All
components of the Subsystem have been implemented usivgishéone interface spec-
ifications. Therefore, a brief introduction of the prototoessential before moving to the
implementation. More details can be found in the official Ndsne specificatior].
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2.3.2 Wishbone Interface Specifications

The Wishbone interface specification can be used for a ppo#pbint connection between
two cores as well as to implement some kind of bus to connettiptaucores. The Wish-
bone specification presents the MASTER and the SLAVE intedaThe Master interface
is connected to the Master component that originates a dasdction. The Slave interface
is connected to the component that responds in the bus ttéorsae., the Slave compo-
nent. The Master and Slave interfaces can be connected hoottaer in different ways
e.g., (i) a point-to-point connection, (ii) a shared bus), & crossbar bus or (iv) a data flow
interconnection. In the Wishbone standard, a suffix (_| oy is@ttached to each signal’s
name to clearly identify its direction. This identifies whet a signal is an input to a core
or an output from a core. For example, (ADR_I) is an input algmhile (ADR_O) is an
output signal.

SYSCON
RST | RST |
CLK_I CLK_|
& ADR_O() ADR_I() w
E DATI() DAT_I() Z
< —
S DAT 0 3 C DAT O(
4 WE_O WE_| z
Q  SEL_O( SEL 1) @
T STB_O STB_|I L
N ACK_I ACK O 3
= cyco CYC_|
TAGN_O[-{ USER — TAGN_I
TAGN_| [ DEFINED [-{ TAGN_O

Figure 2.3 Point-to-point connection between the Wishbone MasterSiade.

Figure 2.3 shows a point-to-point connection between a Master and#Shterface
[5]. All timing diagrams (coming later) refer to this connexti Since the Wishbone signals
use active-high logic (Rule 2.30), all signals in the CPU Suslem will also obey this
rule [4]. There are some optional signals in the Wishbone inter§gpeeification put into
service depending on the implementation. These optiogabts have not been discussed
in this report. A short description about the Wishbone fiaie signals is given below.

Syscon Signals

clk_o and rst_o: The SYSCON module generates ttleck output(clk_o) and the
reset outpufrst_o) signals for the Master and Slave interfaces. Theocitignal is the sys-
tem clock and the rst_o signal is the system reset for thecom@ection implementation.
The clk_o signal is connected to the clock input (clk_i) sibof the Master and Slave in-
terfaces. The rst_o signal compels the Wishbone intertacestart and forces the internal
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state machines of the interconnection implementationdw thitial states. The rst_o signal
is connected to the reset input (rst_i) signal of the Magtdr@lave interfaces.

Signals Common to the Master and Slave Interface

cl k_i: Theclock inputsignal is used to coordinate the internal activities of the
Wishbone interconnection. All Wishbone output signalsragistered at the rising
edge of the clk_i signal. All Wishbone input signals must tadbke before the rising
edge of the clk_i signal.

rst_i: When thereset inputsignal is asserted, the Wishbone interfaces are forced
to restart and all internal state machines are switcheddioithtial states.

dat i and dat _o: Thedata inputanddata outputarrays are used to pass bi-
nary data. The minimum granularity of the data size is 8-lihthe maximum size
of 64-bit. The select output (sel_o) signal is used to selgxrticular byte of data in
the data arrays. The signal dat_i is used to transfer thefidatathe Slave interface
to the Master interface. The signal dat_o is used to trartdta from the Master
interface to the Slave interface.

Master Interface Signals

adr _o: Theaddress outpuarray is used to pass binary addresses from the Master
interface to the Slave interface. The higher boundary oftihay is specified by the
address width of the core. The lower boundary of the arragstricted by the size

of the data port and the granularity level.

cyc_o: When a Master interface asserts tyele outpusignal, it indicates that a
valid bus transfer is in progress. The signal remains ased long as a consecutive
bus transfer is valid. For example, in a burst transfer, &sserted at the first data
transfer and remains high until the last data transfer. lrulismaster development,
this signal is used to request the arbiter for the bus-adgeant). After getting the
grant from the arbiter, a Master interface holds the busrmg &s the cyc_o signal is
high.

st b_o: When thestrobe outpusignal is asserted, it indicates a valid data transfer
cycle. It certifies that the other interface signals aredvdh response to every stb_o
assertion, the Slave interface has to assert either the do& err_i or the rty_i signal.

ack_i: The Slave interface asserts theknowledge inpuignal in response to the
stb_o. Each assertion of the ack i signal indicates a notenadination of a bus
transfer cycle.

err_i: The assertion of therror input signal indicates an abnormal termination
of a bus transfer cycle.
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* rty_i: The assertion of theetry inputsignal indicates that the Slave interface is
not ready to send or accept the data. Hence, this cycle sbheuletried.

* sel _o: Theselect outputarray points out where valid data bytes are positioned
in the data array. In READ cycles, the sel_o signal indic#tesposition of valid
data bytes in the data input array (dat_i). In WRITE cycle,sbl_o signal indicates
the position of valid data bytes in the data output array (dat The sel_o array
boundaries depend on the size of the data arrays with byglejeanularity.

Example The select output array of 4-bit is needed to indicate the ligtes within
a 32-bit data array. Each sel_o bit is corresponding to acqodat byte in the dat_i
or the dat_o array e.g., the sel_o(0) bit is for the dat_i(@mto 0) byte, the sel_o(1)
bit is for the dat_i(15 downto 8) byte, and so on.

The Sub-bus system is a 32-bit implementation of the Wisklstandard. There-
fore, we need a 4-bit select array to indicate the four bytéseodata arrays.

 we_o0: Thewrite enablesignal shows whether the current bus cycle is WRITE or
READ. The we_o signal is asserted for a WRITE bus cycle ary$$tav for a READ
bus cycle.

Slave Interface Signals

The Slave interface signals have almost the same descriliti® the Master interface
signals with the opposite direction. Details about the Slaterface signals can be found
in the official Wishbone specificatiod]|

Wishbone Classic Cycles

The Wishbone classic cycles define the general bus opesatioa reset operation, the
protocol and how data is organized during the bus transfex.Master and Slave interfaces
are connected through a number of signals. These signalaléed the “Bus” which is used
to exchange data between the Master and the Slave interfHoesnformation on the Bus
(address, data, control signals etc.) travels in the fortraofsactions.

The Wishbone specification usetandshake protocdqFigure [2.4]) for the bus trans-
fers [4]. A Master asserts the strobe signal (stb_o) when readptster. The Slave asserts
the terminating signal (ack_i/err_i/rty_i) in responséeTerminating signal is sampled at
every rising edge of the clock input (clk_i) signal. If thertenating signal is asserted, the
strobe signal (stb_o) goes low.

Figure 2.5 shows a Wishbone classical single READ transfer cycle. Ahhbne
classical single WRITE transfer cycle is shown in Figuzed]. A Wishbone classical bus
cycle is initiated by asserting the strobe signal (stb_a) #e cycle signal (cyc_o). The
Slave asserts the acknowledge signal (ack_i) for a normmaination. The Slave can insert
any number of wait states (WSS) by keeping the acknowledppabk{ack i) low. The write



2.3 Wishbone Interconnection Standard 12

a1 __ /[ \__

o /=ump\
[

Figure 2.4Wishbone handshaking protocol.

enable (we_o) signal identifies whether the current trarcsfele is a READ or a WRITE.
Each Wishbone classical bus cycle needs to be properlynated before starting a new
one.

CLK I _/ -wss— /
ADR O XXX XX
2| DAT 0 XXX XXX
&| DAT I XXXOXX XXX
g WE O XX\ _ /XX
7| SEL.O XXX XXX
S| STBO __/ N
CYC O ! -
ACK T ' /N

Figure 2.5Wishbone classical single READ cyclé]|

CLK 1 __/ -wss—_/
ADR_ O XXXX_ o XXX
2 |DAT O X0 78 (KX
S| DAT I XXX~ XXXKKXX
2! WE O XX/ XX
Z| SEL O XX XX
S|STBO __/ N
cyco v/ -
ACKI '+ 2NN

Figure 2.6 Wishbone classical single WRITE cyclé]|

The Wishbone classical bus cycle can be used to get blotk-atgesses, shown in
Figure R.7]. The cycle signal (cyc_o) remains asserted for the corafiatst cycle. The
strobe signal (stb_o) is used to control the transfer or $erirwait states. During a block
(burst) access, the Master can either start a new transfaisggrting the strobe signal
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(stb_o) or can insert wait states by keeping it low. This igagste to the single cycle access
where the Slave can insert wait states. In block-style a¢ties arbitration has already been
done and a Master has the ownership of the Slave through téwxeamnection. Thereby,
the Slave is always ready to take a new request.

CLK1 __ /& /& /¢ /8 /
CYCO _ o/ | | |

STBO _ o/ \_ /TN .
ACKT .+ /N _ 4+ /N

Figure 2.7 Wishbone classical block cycle§|[

The new Revision [B.3] of the Wishbone standard also suppadremental block
transfers. However, this is beyond the scope of this repD#tails can be found in the
official Wishbone specificatior].

2.3.3 Maximum Throughput Constraints on the Wishbone

The maximum throughput from the Wishbone interconnectim lze achieved by using
asynchronous termination signals (ack_i, err_i, rty_iut,Bhe asynchronous termination
signals result in aombinatorial lood4] i.e., from the Master to the Slave and then from the
Slave to the Master, through the INTERCON, Figuzed]. The INTERCON is a module
that implements the internal logic of the interconnection.

2
: |

Figure 2.8 Wishbone asynchronous cycle termination paih [

INTERCONN

The simplest solution for this problem is to cut the combanial loop by usingsyn-
chronous terminatiosignals. In this case, the Slave has to de-assert its ackdge/kignal
low after each transfer. Because this approach adds a \atet after every transfer, each
transfer can be completed in at least two clock cycles as showigure R.9. Conse-
guently, the maximum throughput with synchronous ternimggsignals is reduced by half
because a new bus transfer can be initiated after every detock cycle.

Theadvanced synchronous cycle terminatisran optimum solution to overcome the
decreased throughput in which the Slave knows in advantd teagain being addressed.
Hence, the Slave keeps the acknowledge signal (ack_i)tedsather than de-asserting it
first and assert it again for the next transfer. The advangechsonous cycle termination
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Figure 2.9 Wishbone classic synchronous cycle terminated bdist [
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is a beneficial approach for the large bursts. It needs “blensgth+1” cycles to complete
a transfer if there are no wait states, Figuzel[].

Example An 8-cycle burst needs nine cycles to complete the trandidew needed six-
teen clock cycles with the synchronous cycle terminatidmsTs the throughput increase
of 77%.

A single cycle burst is the worst case with the advanced spmcius cycle termination
where its throughput is same as the synchronous cycle tatimm It means both ap-
proaches are same for the single cycle bus transfer.

SN CHANEEDY CHANY CEAN
e 1) XXX N X m

s;1 |/
ACK 0 /

Figure 2.10Wishbone advanced synchronous terminated bd}st [

g ]

We used a technique to increase the throughput for the saygle access. The idea
behind is to use the asynchronous termination (ack_i, ety ii) for the WRITE requests
and synchronous termination for the READ transfers. Sineelarnot need the registered
data output from the Slave, an asynchronous acknowledggaekiti) for the WRITE re-
guest can be used. By using this technique, we need one glotkfor each single cycle
WRITE access instead of two clock cycles. However, the REA§uest still needs two
clock cycles for each single cycle access.

To achieve the maximum possible throughput with the Wisletspecifications all com-
ponents with Wishbone interfaces should follow the techaigf “advanced synchronous
cycle termination” with the asynchronous termination of WWR requests and synchronous
termination of READ requests. The achieved throughputferWRITE requests will be a
single cycle access. Every READ request will be finished uréb length+1” cycles.
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2.4 Memory System of the CPU Subsystem

2.4.1 Overview

The memory systejrused in the CPU Subsystem, consists of a “Read Only Memory”
(ROM) and a “Random Access Memory” (RAM). As earlier disagssthe configuration
macros are written into the RAM of the CPU Subsystem usindgvtam-bus of the control
architecture. The OR1200 core fetches the macros from thiel,R¥fecodes them, and
stores the configuration settings to the different unitsheftransceiver. Hence, the core
needs to run an application to decode the macros. The applida stored into the ROM
of the CPU Subsystem. The core fetches the instructionstinerROM and executes them.
Both memories are 32-bit word aligned.

2.4.2 Random Access Memory (RAM)

As we know, the OR1200 is a 32-bit processor with Wishboneriates for the data
and the instruction. Therefore, we needed to implement hit324de data RAM and a
Wishbone interface to access it. Further, the RAM had to lie dgdressable in order to
support the byte-level granularity of the data arrays. TA&Rsize and the address-lines
are configurable to lessen its power consumption and the area

g —

[4 init_value_(
l¢- mem_siz g —

N

z

v
—clk_i——p
—rst_i——p]
—wb_cyc_i—p]
< —wb_adr_i—p]
—whb_sth_i—»

—wb_we_i—{ RAM32 | RAM
—wb_sel_i—»] _whif (32-bit)
—wb_dat_i—
<wbh_adk_o—
<«wb_er_o—]
<«Wwb_rty_o—f
<—wb_dat_o—

Wishbone
Interconnectio

Figure 2.1132-bit Random Access Memory (RAM).

Figure 2.11] shows the design of the implemented RAM having 32-bit widéadhr-
rays. It is byte-addressable RAM with a Wishbone interfatee input “mem_size g~
determines the size of the RAM. The input “aw_g” controls #delress-width needed to
access that much size. The empty RAM is initialized with tmgut value “init_val_g*“.
As the RAM is a slave component, a Slave Wishbone interfasebban implemented to
access it. The Wishbone signals have been described before.
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Write and Read Operations

We used synchronous termination (ack i) for READ requeastissgynchronous termina-
tion (ack_i) for WRITE requests to achieve the maximum tigiquut from the RAM while
breaking the combinatorial loo2 [3.3.

u_ram/init_value_g

u_ram/mem_size_g 65536

u_ram/aw_g 16

wramiclk i [ | [ | [ I L

u_ram/rst_i

u_ram/wb_data_i A55D93C3 15866ABF 2B...

u_ram/wh_we_i

u_ram/wb_sel_i F F F F F

u_ram/wb_adr_i 557§ IAAF3 AAF3 557A AAF7

u_ram/wb_cyc_i

u_ram/wb_stb_i

u_ram/wb_dat_o 47...[16E65A19 00000000 XXXX... A55D93C3]00000000

u_ram/wb_ack_o

u_ram/wb_err_o

u_ram/wb_rty_o

dooons ' U dsbms T daooms |

Figure 2.12Sequential single transfer WRITE/READ.

Figure R.17 shows a single transfer WRITE and READ operations for thevRA
A Master component initiates the WRITE request at time 222y asserting (i) the
wb_cyc i, (ii) the wb_stb_i and (iii) the wb_we i signalshéwb_sel i signal identi-
fies the valid data bytes in the data arrays (wb_dat_i/wb ajatepending on the operation
(WRITE/READ). For instance, in this WRITE operation, alufdbytes of 32-bit input data
array (wb_dat i) are valid to be written to the address (wlb_i Since we are using asyn-
chronous acknowledgment for WRITE requests, the wb_adgneshas been asserted at
time 2220 ns without any delay. Hence, we get a single cycettaunsfer for the WRITE
operation. Because of the synchronous acknowledgmenh&READ requests at time
2260 ns the acknowledgment wb_ack i is one clock cycle (ateime 2280 ns) than the
request. Hence, the READ operation finishes in two clockesycl

2.4.3 Read Only Memory (ROM)

The application to decode the configuration macros is siargte ROM. The core fetches
the instructions one by one from the ROM and executes themuré&i.13 shows the
design of 32-bit ROM implemented with the Wishbone integfathe input “mem_size g~
determines the size of the ROM while the input “aw_g” corgrible address width needed
to access that much size.
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l¢—mem_size g —
l¢~aw_g

le—ihex_file

—clk_i—»]
—rst_i——»]

—wb_cyc _i—
—wb_adr_i—»
—whb_sth_i—»
—whb_sel_i—»
—whb_dat_i—»

ROM32 | rRoM
_whbif | 32bit)

Wishbone
Interconnection

<«—wb_ack 0—]
<«—wb_er_o—]
<«—wb_rty_o—
<«—wb_dat_o—]

Figure 2.1332-bit Read Only Memory (ROM).

Read Operation

The READ request for the ROM also gets the synchronous adedgment. Each READ
operation takes at least two clock cycles to finish. Heneaepiaximum throughput for the
READ operation is similar to the RAM i.e., two clock cycles favery READ access.

Memory Initialization

An application is compiled with the software toolchain tangeate a “memory initial-
ization file” for a particular processor. The memory inizakion file contains the binary
instructions of the application. The input “ihex_file” shown Figure P.13 is a reference
to the memory initialization file going to be loaded into th@MR. The details about the
software toolchain for the OR1200 processor and the geaaerat memory initialization
file are explained in the Sectio.8.9. Here we give a short overview about loading the
initialization file into the ROM. The loading of the initiakation file has been handled inside
the ROM.

After receiving the reset signal the OR1200 core fetchedfiteebinary instruction
from a default reset address i.6x00000100. The initialization file must be loaded into the
ROM starting from this address so that the first instructibthe applications is stored at the reset
address of the core. Figurg.[l4 shows a snapshot of an initialized ROM after loading the migm
initialization file into it. The first binary instruction (®820F000) in the initialization file has been
loaded at the address 0x00000040. The OR1200 core alwagsages a word aligned addréser
the instruction fetch. Therefore, we have implemented ddaadigned ROM. Hence, if the address
(Ox00000040) is two bits shifted left the resulting addnedkbe the reset address of the OR1200
core (0x00000100).

4The last two bits of a word aligned address are zero. TheWwasbits address the four bytes inside a
32-bit word and there is no meaning of partially fetching by instruction.
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Iz Memory Data — Ath_thd_s 1 m Lt Au_rom Su_r

QOOGDL0F  [HERERERE KEREEHEE KHHHHEHR HRHRRE KRR 00000000 Q000000 Qa000000
QOOQDL07 Q0GOS QOQ00006 QO0O000F QOOOAGAE Q000000 Q0000O0C QOCAOOOE QO000008
QOOOQ0EE 100000009 00000003 00000007 000000 00000005 Q0000004 QO0Q0ACNE QQ000002
QOOOOOEE 00000001 SCZ21007d 44004300 34410004 35210000 3562FFD4 D7EZZ27D4 3432FFF3
ooooooef (DFE21FFE 9CE00000 15000000 O7FFFFF9S DYE2ZFFC B482FFF4 DFE2SFF4 15000000
QOO0OO0s? OFFFFFFL SCo0000A8 15000000 10000003 BC220000 3462FFF0 DFEZZ7F0 Ad340001
QOOGO0HE |B482FFEC DYE21FEC B462FFFC DYEZZVFC 8482FFS9d DYE21FS9d SCE30002 Sd6Z2FF98
000000y DFE22798 B482FFFC 04041800 2482FF9C 3462FFES D7EZ2279C E0341800 2462FFAd
oooOO0cf (23482FFAR0 DYE21FA0 BE630002 B462FFDC DYE2Z7A4 AS34030C 15300000 DFEZ1FES
OOOOO0cY  (9CE20005 B4E2FFE4 DFEZ27E4 24840000 B482FFA2 D7E227A8 E0241300 2462FFEO
QOO0OOCKE 184832FFAC DYE21FAC BE63000Z 3462FFED DYEZZYB0 AZS403D0C 18800000 DFEZIFEC
QOOGO0KRY 184630000 3462FFB4 DIYE227B4 AB340413 18300000 D7E21FDC 84630000 S462FFBS
0ooo00st (DFEZ2Z27BE ASE40418 18800000 15000000 10000028 BC230000 3462FFDS DFEZ21FDS
0000007 (E0EIZ2002 B482FFBC 3462FFCC DVEZ1FBC EQE3Z000 3432FFCE B462FFBEC DFEZZ7EC
OooOO0SE (BES40002 B452FFCO DFEZ1FCO B462FFCE D7E21FCE E0632303 3482FFC4 S462FFCC
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Figure 2.14The ROM initialization.

2.5 Triple-layer Sub-bus System

2.5.1 Overview

Current VLSI technology has made it possible to incorpoeatextensive number of transistors
in a single die area. Therefore, modern systems can accoaiempbenty of computational blocks
(CPUs, DSPs, IPs) in a single chip to support the modern ctatipn extensive applications. How-
ever, the interconnection between the increasing numbeomiponents in a SOC is a challenge.
Since the traditional serial buses have scalability andiWwaith limitations, we need to find better
interconnection methods for the systems having large nowftmmponentsT].

The advancement in modern SoCs needs hierarchy of buses gystem. Therefore, a multi
layered bus architecture is a better solution to cope thigdiions of the traditional buse8][ Most
of the modern buses are following the hierarchical strgctarovercome the scalability limitations
while providing a higher communication throughput. Moregvmodern hierarchical buses par-
tition the communication domains into different groups ofrenunication layers to achieve the
bandwidth’s requirement].

In this section, we are going to discuss a multi layered bls® @alled Crossbar) implemented
to connect the components of the CPU Subsystem. All intesfat this bus comply the Wishbone
interconnection standard.



2.5 Triple-layer Sub-bus System 19

2.5.2 Sub-bus Specifications

The CPU Subsystem includes three Master components andfavue components. The Mas-
ter components include: (i) the OR1200 instruction intezfa(ii) the OR1200 data interface and
(iii) the Main-bus master interface. The Slave componemttude: (i) the ROM, (ii) the RAM,
(iii) the Main-bus slave interface and (iv) the OR1200 slaterface€. The development of a scal-
able and high performance bus architecture to intercorthese components was essential for the
Subsystem.

The Sub-buss a triple-layer bus architecture developed with three tstaisiterfaces and four
Slave interfaces. The Master components are connecte@ tddister interfaces. The Slave com-
ponents are connected to the Slave interfaces of the Subylstsm. All interfaces employ the
Wishbone interconnection standard. The Sub-bus is a simf#econnection architecture which
provides high data bandwidth and can support up to single ¢iroughput.

The Sub-bus has been implemented by considering the lowr@ovdesmall area requirements.
The configurable address lines for the Slave interfacegied®e area and power consumption of
the Sub-bus. Since the Sub-bus is a triple-layer implentientathe Master interfaces can access
the Slave interfaces in parallel as long as there is no cbatebetween the Master interfaces on
a single Slave interface. If there is a contention, a psiobiased arbitration protocol has been
implemented to serialize the ownership requests. The Sabrplements a distributed arbitration
method i.e., each Slave interface has its own arbiter talsggithe contention on itself. Each Master
interface has been assigned a fixed priority that influerteesutbitration. A Master interface with
higher priority takes the bus ownership by suspending theentibus transfer. The suspended
Master interface resumes the transfer when the higheiityridaster interface leaves the ownership.
The “Sub-bus master interface” connected to the “Main-baster interface” owns the highest
priority because this interface has to deliver data and g&t gain and its request should not
be delayed to have a predictable response. The Load/Stredtions access the OR1200 data
interface during the executio. Hence, the Sub-bus magienface connected to the OR1200 data
interface has a higher priority than the Sub-bus masterfatte connected to the OR1200 instruction
interface. Otherwise, a higher priority instruction iriéexe never allows the data interface to access
the memories, particularly when the OR1200 core fetchesingtnuction every cycle.

2.5.3 Sub-bus Architecture

The architecture of the Sub-bus system has been partitiateetvo figures for a clear illustration
and to easily understand. Figuiz 13 shows the Sub-bus architecture and its internal connestio
from its Master interfaces to the Slave interfaces. Figdr&€ shows the internal connections of
the Sub-bus from the Slave interfaces to the Master intestac

According to the specifications, the Sub-bus contains thaster interfaces to connect three
Master components and four Slave interfaces to connectotireSlaves components of the CPU
Subsystem. All units of the Sub-bus are individually dedsai below.

Configuration of the Sub-bus System

The configuration generics are used to configure the diffareits of the Sub-bus. The address-
width selection generics are used to configure the addredthsvof the Masters interfaces and

5The original OR1200 implementation does not include thierface.
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Figure 2.15Sub-bus architecture (Master to Slave interfaces interecis).
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Figure 2.16Sub-bus architecture (Slave to Master interfaces interecis).
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the Slave interfaces. An optimal width selection for thevBlanterfaces significantly reduces the
number of address lines inside the Sub-bus architecturehwdansiderably cuts down the area and
power consumption of the Sub-bus. Taddress decodersse the encoding-bits selection gener-
ics and the slave-identities to select a particular Slaterfece. More details will be given while
describing the address decoder.

Sub-bus Master Interface

Each Master interface includes (i) the configuration gesefii) the Wishbone signals, (iii) the
internal signals and (iv) the address decoder. Each umitligidually described below.

Configuration Generics

These generics are used to configure each Sub-bus MastéadeteThese are used to adjust
the width of the Wishbone addrésand the widths of the internal address lines for each Sub-bus
Slave interface.

Example The generiaw_wbadjusts the width of the address lines coming to the Masterfate
from the outer world. The generaw_romadjusts the width of the internal address lines of the
Sub-bus going from the Master interface to the Slave Interfaonnected to the ROM.

W shbone Signal s

The Wishbone signals of a Master interface are used to corn®taster component to the
Sub-bus. A component connected to the Sub-bus must havehddvis interface. If the external
component is a Master, it must have a Master Wishbone icitia be connected to the Master
interface of the Sub-bus. If the external component is ae&slavmust have a Slave Wishbone
interface to be connected to the Slave interface of the $i8b-b

Internal Signals

The internal signals are used for the point-to-point irdarection between the Master inter-
faces and the Slave interfaces of the Sub-bus. Some intgmells of a Master interface are shared
among all the Slave interfaces while other are dedicated frarticular Slave interface.

Address Decoder

An address decodeshown in Figure.17] is a core component of a Sub-bus Master interface. It
is used to decode the incoming address from the Master caanpohhe incoming address includes
a specific range of bits to identify the destination Slaverilaice for a particular request. The
configuration generics distinguish the encoding bits indfidress and the identity of a requested
Slave interface. The decoder includes a comparator for 8abhbus Slave interface to chop out
the encoding bits and compare the value with the Slave adel$ identity. The decoder selects
a Slave interface if the encoding bits (in the address) hsladentity. For example, if the input
address (ms_adr_i) holds the identity (rom_id) in its déogdits (enc_bits_rom) the Sub-bus
Slave interface connected to the ROM will be selected (r@amoxs The encoding-bits are always
most significant bits (MSBs) of the address.

5The address coming from the Master component connectedstMtster interface
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Figure 2.17Address decoder.

Figure .19 shows a waveform of the decoder. The input address is 3@4die (aw_g) in
which upper 16-bit (enc_bits_slave_g) hold the identibéthe Sub-bus Slave interface. The de-
coder receives an address, compares the 16 MSBs with the Blentities and asserts the slave-
select signal corresponding to the Slave interface haviagitientity.
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Figure 2.18Address decoder waveform.
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Sub-bus Slave Interface

EachSub-bus Slave interfadgecludes (i) a configuration generic, (ii) the Wishbone sign (iii)
internal signals, and (iv) an arbiter. Each unit has beeivithaally described below.

Configuration Generic

This value is used to configure each Sub-bus Salve interteadjtist the width of the address
going to the connected Slave component. It also adjustsititbswof internal address-lines coming
from the Sub-bus Master interfaces.

W shbone Signal s
The Wishbone signals are used to connect a Slave compongng l@aSlave Wishbone inter-
face.

Internal Signals

The internal signals are used for the point-to-point irdarection between the Sub-bus Slave
interfaces and the Sub-bus Master interface. Some of tlkeenalt signals are shared among all
Master interfaces while others are dedicated for a padiddlaster interface.

Arbiter

There is no centralized entity to control the accesses t&thebus Slave interfaces. Each Slave
interface itself grants the access requests and implermadiked priority arbitration protocol (pre-
emptive) to handle the contention on its ownership. Each Slave mxtertontains an arbiter inside
(Figure R.19) which implements the arbitration protocol and grantsdheesses. A Master inter-
face requests the ownership of a Slave interface by asgérialave select signal (ms_ss_i) for that
Slave interface and also the cycle input signal (ms_cyo indicate the valid bus transfer.

—inst_ss_i—»

—data_ss_i—» —inst_bg_o-
-mbus_ss_i—» —data_bg_o-
-inst_cyc_i—>] —mbus_bg_o

Fixed Priority
-data_cyc_i—» Arbiter
mbus_cyc_i—]

—sl_ack_o—»

Figure 2.19Fixed priority arbiter.

Figure 2.2Q illustrates the implemented arbitration protocol. A Masinterface requests the
ownership of a Slave interface by asserting its cycle inmg (cyc_i) signal and the Slave selec-

"Low priority Master cannot block the request of a high ptipMaster.
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tion signal (sl_ss_i) for the requested Slave interfacee Flave interface gives the grant if iélle
Otherwise, the requesting Master interface has to compgtetiae Master interface having the
ownership of the Slave interface. A Master interface hatmeghigher priority wins the ownership
in the contention. The suspended Master interface waitstbatSlave interface is free.
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Figure 2.20Fixed priority based arbitration.

2.5.4 Fundamental Characteristics of Sub-bus

The internal interconnections of the Sub-bus have beedetivinto shared and dedicated signals,
shown in Figure 2.15. The shared signals of a Master interface are visible astoaltjthe Slave
interfaces while the dedicated signals correspond to acpkat Slave interface. When a Master
component requests for a bus transaction, the Sub-bus Makgtdace sets the shared signals and
sends the request over the dedicated signals to the requestebus Slave interface. That Slave
interface arbitrates the access request and gives the grhatshared signals only qualify for the
Slave interface which grants the request while other Slaterfaces simply ignore them. The
gualified signals are propagated to the Slave componentlogétVishbone signals. The connected
Slave component sees the request (READ/WRITE) and resporidgccordingly. Despite that the
shared signals of a Slave interface are visible amongsteaNMaster interfaces (Figurg.[Lg), only
a granted Master interface qualifies these shared signdlsesnals them to the request initiator.

The triple-layer Sub-bus is very easy to use and simple tdlkaits re-configurability provides
the flexibility to employ it according to the system’s requirents and to maneuver its area and
power utilization. The Sub-bus supports up to single cyiateughput with zero arbitration time
when the bus is idle, otherwise one clock cycle at maximume $hb-bus also supports block
transfer of any size with its maximum throughput.

Even though, the Sub-bus implementation can support saygle throughput, since it will be
connected to the components having Wishbone interfacespakimum throughput will be con-
strained by the Wishbone standard’s limitations on the maxa throughput (see Secti@n3.3.

8Free, no grant to any Master-interface.
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2.6 The OpenRISC1200 Processor

2.6.1 General Description

The OR1200 processor (Figura 21]) implements the central processing unit of the CPU Subsys-
tem. The OR1200 is a 32-bit scalar RISC soft-processor wéttvitd memory architecture. It has a
single-issue 5-stage integer pipeline, virtual memorypsupand a MAC unit for basic DSP opera-
tions. The OR1200 delivers a sustained throughput and stgpgiagle-cycle execution for most of
its instructions. Its intended target applications inelu@l) embedded applications, (ii) Internet and
networking applications, (iii) telecoms and wireless aggilons, and (iv) automotive applications.
The OR1200 is a 32-bit implementation of the OpenRISC1000icture. The OpenRISC1000
is a latest architecture designed for 32-bit and 64-bit RIEP processors. The emphasis of the
architecture is on (i) simplicity, (ii) low power, (iii) hiyscalability and (iv) high performance of the
processors. The OR1200 supports big-endian byte orderimggOR1200 is an open source proces-
sor under the LGPL license. It is developed and being manbgdide OpenCores organization. Its
verilog model is freely available &penCores

PM| Power
I/F | Management IMMU
WB
|
DB ICache
IIF Debug 8 KB
CPU/DSP
Tick DCache
timer 8 KB
WB
D
INT
JE PIC DMMU

Figure 2.21The OpenRISC1200 processor.

2.6.2 Performance

The OR1200 supports the system frequency of 250 MHz undestwease scenario at 0.18n

6 LM fabrication process. It can execute 250 dhrystone omliof instructions per second (DMIPS)
at 250 MHz, the worst-case. It can execute 250 MMAC operatatr250 MHz under worst-case
conditions. However, under normal conditions, the OR12@ukl provide over 300 dhrystone 2.1
MIPS at 300 MHz and 300 DSP MAC 32x32 operations. This peréoree is at least 20% more
than any other competitor in this clasi.|

The power estimation of the OR1200 is less than 1 Watt atludttle while less than 500 mW
at half-throttle with 250 MHz clock at a 0.18m process. Its die-area without cache memories is
less than 0.55gmmat 0.18um 6 LM fabrication process. A default configuration of the ORQ2
has about 1M transistorS,[10].
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2.6.3 The OpenRISC1200 Architecture

Figure .29 shows the architecture of the OR1200 core including theérakprocessing unit
(CPU/DSP), caches (IC/DC), memory management units (IMMIXMU) and other utility com-
ponents. Many components are optional to implement. A carapbis implemented and controlled
through its corresponding special purpose registers aitdlependent registers. Some important
units of the processor will be discussed below. More detaifsbe found in the official documents
of the OR1200 core and in its RTL implementatiér-12].
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Figure 2.22The OpenRISC1200 architecture.

Caches and Memory Management

As the OR1200 implements a Harvard memory architecturegstehLevel-1 separate data cache
(DC) and a Level-1 instruction cache (IC). It also has a s#padata memory management unit
(DMMU) and an instruction memory management unit (IMMU).tBaaches (IC/DC) are N-way
set associative and physically tagged. The DC is scalabha fr Kbytes to 8 Kbytes. The IC is
scalable from 512 Bytes to 8 Khytes. A default implementatibthe processor has direct-mapped
8 Kbytes caches (IC/DC) with 16 Bytes line size (8-byte limseds also supported). The DC
operates in write-through mode (only supported). The ORE2Pports an implementation without
having caches. However, it affects the throughput of thegssor.

The memory management units (IMMU/DMMU) enable the virtome@mory support and con-
sist of hash-based translation-lookaside buffers (TLBs}h translation-lookaside buffers (instruc-
tion/data) are direct-mapped with page size of 8 KbyteshBaBs (ITLB/DTLB) are individually
scalable from 16 to 128 entries per each way. Both MMUs haireeatl address-space with a 32 bits
virtual address and a physical address from 24 to 32 bits.fauttemplementation of the OR1200
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core have direct-mapped translation-lookaside buffefsL@s/ITLBS) of 64 entries per each way
with a fixed page size of 8 Kbytes.

Debug Unit

The OR1200 optionally provides a debug unit to support bdsliugging features. The debug
unit does not support watch-points, breakpoints and pmdlaw control registers. However, the
OR1200 provides a development interface to connect a meanad additional debugging facility.

Tick Timer

The OR1200 core provides a high-resolution hardware tiffiee. timer is clocked with the RISC
clock. It is used by operating systems for task schedulirg) @ecise time measurement. The
maximum range of the timer is’2clock-cycles. The maximum time period between the intésrup
is 28 clock-cycles. The timer provides a mask-able interrupt aifiers different run-modes: (i)
single run, (ii) continuous run or (iii) restart-able.

Programmable Interrupt Handler (PIC)

The OR1200 has an interrupt-controller that receives satanterrupts through its interrupt in-
terface and sends them to the Central Processing Unit (CRig)interrupt controller supports two
non-maskable interrupts and 30 maskable interrupts, withariority levels.

Power Management Unit (PMU)

The OR1200 core has a sophisticated power management wohtml its power consuming
functions. The power management unit offers different posmvn modes: (isleep mode(ii)
doze modg(iii) slow and idle modeand (iv) CPU stalling The clock frequency of the processor is
software-controlled in the slow-and-idle mode. The powerstimption can be reduced from 2x to
10x in this mode. In the doze mode, a software running on the isssuspended and the clocks to
all RISC internal units are disabled except to the real-tofoek and internal timer. Other on-chip
blocks can work normally in the doze mode. The power consiom this mode can be reduced
up to 100x. The processor leaves this mode and enters theahorade when a pending interrupt
from an external peripheral occurs. In sleep mode, thetimma-clock and periodic timer are the
only RISC internal modules that are activated. The OR126a%ele the sleep mode and enters the
normal mode when a pending interrupt from these modulesrecclhe power consumption can
be reduces up to 200x. The power management unit does nobrsufymamic clock gating. A
more advanced power management utility can be connectdwt®@R1200 core using the power
management interface. The implementation of a power manageunit in the core is optional and
depends on the designer’s requirements.

Quick Embedded Memory (QMEM)

The QMEM implements some time critical functions to achiaviast and predictable behavior
of (i) the soft floating-point unit, (ii) the context switatd, (iii) the exception handlers and (iv) the
stacks. Since both caches (IC/DC) share the QMEM, the ict&brufetch operations affects the
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performance of the Load/Store operations. The effectiveutfhput of the instruction fetch opera-
tion is one instruction per clock cycle. Whereas, data aasbhave different effective throughputs
for READ and WRITE depending upon the instruction fetch ases. In absence of an instruction
fetch, READ data takes two clock cycles per access while VERI&ta takes one clock cycle per
access. The QMEM is an optional unit. Its implementationgéases the OR1200 size and makes
it slower. The QMEM sits behind the memory management utMdU/DMMU) so all addresses
are physical. Since the IC and the DC are sitting behind th&®IMhe whole design timing might
be worse with the QMEM implemented?).

Store Buffer (SB)

The Store Buffer (SB) is optionally implemented to improwe fperformance by buffering the
CPU's store accesses. The SB is very important for the fomgiiologues because the DC can only
work in write-through mode and all stores would have to catgthe external write-back writes
to the memory. The SB is implemented between the DC and tlee\Wathbone interface of the
OR1200 core. All store accesses are stored into the SB anedimtely completed by the CPU.
However, the actual external writes are performed latemddethe SB masks all data-bus errors
related to Stores, but data-bus errors related to Loadsedireicéd normally. Since the OR1200
core implements a strict-memory motledll pending CPU loads will wait until the store buffer
is empty [L1]. The SB makes the OR1200 implementation bigger, dependwag the number of
entries in the SB’s FIFO1]2].

System Interface

The system interface is used to connect the system signtile ©R1200. The interface is com-
prised of (i) the system clock, (ii) the system reset anli gtiner system level signals.

Wishbone Interfaces

The OR1200 core is connected to external peripherals ardnektmemories through two inter-
faces, the data interface (DWB) and the instruction interf@dWB). Both interfaces support only 32
bits bus width and comply with the Wishbone specificationiBien [B]. The instruction Wishbone
interface (IWB) is used to fetch instructions from the instion memory (IM). The data Wishbone
interface (DWB) is used for the data transfer between dataong (DM) and the processor.

2.6.4 Central Processing Unit (CPU/DSP)

The verification of the OR1200 core was the most importanéahje of the thesis. Therefore,
we must have a detailed information about the internal sechire of the core. In addition to
the OR1200’s specification, the central processing unitU)CB the most important component
to understand in detail. The CPU implements the instrutierecution pipeline architecture of
the core. We must have a comprehensive knowledge aboue(grtthitecture of the CPU, (ii) its
pipeline execution, (iii) its timing, (iv) register set af\ the organization of inside units plus their
co-ordination during operation. More details about the Glthitecture can be found in the official
documents of the OR1200 processor and in its RTL implemient§s, 9-12].

9All Load/Store operations are performed in order.
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CPU Architecture

The OR1200 CPU/DSP is shown in Figuiz43. It implements the 32-bit part of the Open-
RISC1000 architecture. A brief introduction about the sioit the CPU is presented below. Details
about its pipeline architecture will be given in the subsstsection.

Insn MMU ‘
& cache

Instruction Integer EX
unit pipeline

Exceptions  |— GPRs MAC unit
System | Load/Store
System —

unit

CPU/DSP

Data MMU
& cache

Figure 2.23Central Processing Unit (CPU/DSP).

Instruction Unit

Theinstruction unitimplements the basic instruction pipeline of the OR120@& cdrhe instruc-
tion unit fetches instructions from the memory system arspatches them to the available exe-
cution units (LSU, ALU, MAC unit) while ensuring a preciseception model. The instruction
unit also executes the branches and jump instructions.pleiments the “OpenRISC Basic Instruc-
tion Set” (ORBIS32) of the OpenRISC1000 architecture. Tipei@®RISC1000 architecture defines
five instruction’s formats and two addressing modes: (i)steg indirect with displacement and
(ii) PC relative. The ORBIS32 instruction set class has B2vime instructions aligned on 32-bit
boundaries in the memory and operates on 32-bit and 64-tait d&e instruction set also supports
eight custom instructions implemented on demand. An amditi co-processor can be attached to
the core. All branch/jump instructions are followed by aage$lot while Return-from-Exception
(RFE) does not have a delay slot. Most of the OR1200 instrnstexecute in a single cycle. The
instruction multiply takes three clock cycles and the instion divide takes 32 clock cycles to
execute. Both instructions are implemented in the MAC urtie MAC unit will be discussed later.

Register Set

The OR1200 core implements thirty two 32 bits general puepegisters (GPRs). The GPRs have
been implemented as a dual port synchronous memory with 8@sva 32 bits each. The OR1200
contains 32 groups of special purpose registers (SPRd3oltraplements unit-dependent registers.
Some important SPRs for the verification of the OR1200 arflgrdiscussed below.

Super vi si on Regi st er
The supervision register (SR) is a special purpose regigteh shows the state of the OR1200
processor.
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Exception Supervision Registers

There are sixteen exception supervision registers (ESERIE). It is up to the designer how
many ESRs he needs in the implementation. The SR is copiedhatESR register when there is
exception. If an implementation has only a single ESR, tleeption handler routine has to save it
before re-enabling the exception recognition in the SR.

Program Count er Regi ster
The program counter (PC) register stores the address ogttienstruction to be executed.

Exception Program Count er Regi ster

The exception program counter (EPCR) is a special purpasstee which stores the copy of
the PC register when there is an exception. It stores theeagldf the instruction interrupted by the
exception.

Exception Effective Address Registers

There are sixteen exception effective address registdEARD-EEAR1S). It is up to the
designer how many EEARs he wants in the implementation. Wihere is exception, the EEAR
saves the effective address (EA) generated by the faulistguction. If an implementation has only
one EEAR, the exception handler routine has to save it beésemabling the exception recognition
in the SR.

Load Store Unit (LSU)

The Load/Store unit (LSU) is responsible for transferriagacbetween the GPRs and the internal
data Bus of the CPU. The LSU has been implemented as an indieptemnit in the OR1200 core
so that stalls in the memory system only affect master pipeli there is a data dependency. All
Load/Store requests are aligned on 32 bit boundaries. Theda® execute one load instruction
every two clock cycles (assuming a hit in the DC). The executf store instructions takes one
clock cycle (assuming a hit in the DC).

Arithmetic and Logic Unit (ALU)

The ALU is a pipeline unit that implements: (i) the arithneetinstructions, (ii) the compare
instructions, (iii) the logical instructions and (iv) thetate and shift instructions. Most of the ALU
instructions execute in a single cycle.

Multiply Accumulate Unit (MAC)

A fully pipelined multiply-accumulate (MAC) unit executéssic DSP operations and MAC in-
structions. The MAC unit has the ability to accept new MAC repiens every clock cycle. It
optionally implements multiply and divide instructionsh& multiplier in the MAC unit is 32x32
bits. However, the multiply instructions only use the lo82rbit of the result. The MAC instruction
has 32-bit operands and a 48-bit accumulator.
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System Unit

It connects all the CPU signals to the system signals exbepetwhich are connected through the
Wishbone interfaces (IWB/DWB). The system unit also impbaits the system SPRs e.g., SR.

Exception Unit

The exception unit handles the generated exception in tHE20®Rcore. These exceptions include:
() the system calls, (ii) the internal exceptions, (iiiletmemory access conditions (e.g., unaligned
access/invalid address), (iv) interrupt requests andh@)iriternal errors (e.g., unimplemented in-
structions). Each exception has a defined offset addregscdrtrol is transferred to this address if
there is an exception.

Example The control is transfered to the address 0x00000600 for afigmmed memory access
exception and to the address 0x00000700 for an illegaluastm exception.

2.6.5 OpenRISC1200 Instruction Pipeline

The pipeline architecture is the most important part to ustdad while verifying a pipelined pro-
cessor. Pipelining is a technique to divide the instructi@xecution into a number of independent
steps to improve the throughput of a processor. These indepé steps are called pipeline stages.
Each pipeline stage ends up in a storage (pipeline regisierts execution so that the subsequent
stages can use the result. The OR1200 core implements géistager pipeline. The pipeline
stages are shown in Figur.p4.
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Instruction
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Figure 2.24The OpenRISC1200 pipeline stagés]

The GenPC is not an independent pipeline-stage in the ORA@@0 It works in parallel to
the Instruction Fetch (IF) i.e., the first pipeline stage.eThBenPC generates the next program
counter (PC) and sends it to the IMMU (if implemented) to akdte the physical address. If there
is no IMMU and IC in the implementation, the PC address is bgpd and directly goes to the
instruction memory (IM) via the IWB. The IF stage fetches niestruction from the IC. If no IC is
implemented, it fetches the instructions directly from ke In the Instruction Decode (ID) stage,
the new instruction is decoded to identify (i) the basic tgbe¢he instruction, (ii) the instruction’s
Opcode, (ii) the addresses of the operands to be fetchadtfre register file, (iv) calculate the im-
mediate if the instruction is with immediate, (v) the addresthe data to be loaded/stored, and (vi)
the execution unit (LSU/ALU/MAC) for the instruction. Thext pipeline stage is the Execution
stage (EX). After providing the required input data, anrinstion is dispatched to its execution unit
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to execute. Since the LSU is implemented as an independénb umot affect the master pipeline of
the OR1200, all instructions (except load/store) bypasd.thad/Store (LS) pipeline stage. In this
stage, the LSU transfers data between the GPRs and the D@s(é#d otherwise, the data memory
(DM)). In the Write Back (WB) pipeline stage, the result of imstruction’s execution is written
back to the register file (RF).

The OR1200 core implements an exception-model paralléidgipeline-model to handle ex-
ceptions in a controlled way. Each pipeline stage (exceptcdh generate an exception. The
exception-unit implements the exception-model. It inpilts exception signals from different
pipeline stages and generates the corresponding excefmbors to calculate the new program
counter (PC). If an instruction in the pipeline results in eception the next PC will be the
exception-vector corresponding to that exception (ses&tiion2.6.4).

We will thoroughly discuss the pipeline execution in next fections.

Register Level Outlook

Figure R.29 shows the register level view of the OR1200 pipeline asddtiire. The register level
understanding is very important and a concrete startingtpoiverify a digital design. Here we
are going to discuss 5 important registers of the pipelichitacture. However, many registers are
involved in the control-logic and the data-path.

PC

op, F, addr, disp
Gen PC
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IF
. op, disp
KN CT

L addr
Operand
muxes

| LSU || MAC || ALU |

LS
DC
EX e
Writeback
muxes
wB

Figure 2.25Registers abstraction of the OR1200 pipelihé [

The GenPC calculates the next program counter (PC) and seadsldress to the IC/IM. A
new instruction from IC/IM is fetched and stored into iHe i nsn register. Since the fields in the
OR1200 instructions are fixed, the instruction inithiei nsn is translated to get the addresses of the
source GPRs. The addresses are fed into the register filé{®F)et the source operands (GPRs).
The instruction in théf _i nsn moves to the d_i nsn register and a new instruction is fetched into
thei f _i nsn register.

The fields of the instruction in the ID stage are translateth&éocontrol-signals for the next
pipeline stages (EX and WB). These control-signals sehetiriput data for the execution units

10Register File implements the thirty-two GPRs of 32 bits each
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from the Operand Muxes. These control-signals also sdle@tecution-unit to execute a particular
instruction. Each execution-unit has a different executime depending on the instruction being
executed. The LS stage comes on the way for Load/Store atistng. The address of the destination
operand is also parsed out from the instruction initthe nsn register. This address is registered
to be used in the Write Back (WB) stage. When all this donej thénsn instruction shifts to the
ex_i nsn register.

The results from the execution-units are fed into the WatdbMuxes. The Writeback Muxes
store the calculated result to the Register File (to theimsin GPR) and also send it to the
Operand Muxes so that the ID stage can use it to handle datamdepcies. Finally, the execution
of the instruction ends and it moves from te i nsn register to thewb_i nsn register. Currently,
there is no use of this register may be it is for future use.

Behavioral Outlook

Figure .29 shows the behavioral model of the OR1200 pipeline. It isictbat the calculation
of the next PC (GenPC) and fetching a new instruction (IFejtage in parallel. The calculation of
the next PC follows a procedure. The GenPC block monitotseifexception-model has generated
an exception. If YES, the next calculated PC would be the g@e-vector corresponding to the
generated exception. If NO exception was generated, th® Gehecks for the SPR control-block’s
implications on the next PC. The SPR control-block genertite address of the next instruction
under some specific conditions e.g., thatspr! instruction writes the PC. Furthermore, if there
are no implications from the SPR-block, the GenPC block khéfche instruction in the ID stage
is a branch/jump. If YES, the next PC will be the offset addrgenerated by this instruction.
Finally, if there was no branch/jump instruction in ID statiee PC will be simply incremented to
the address of the next instruction in the sequence. TheaegdC goes to the IC if existed in an
implementation. Otherwise, it directly goes to instrustroemory (IM). The GenPC stage ends up
here.

The instruction at the PC address (in IC/IM) is fetched aratest into a pipeline register
(if _i nsn). If no instruction was fetched (error in fetching a newiinstion/RFE instruction/branch
taken), a default instruction is fed into the i nsn register. The instruction in thid _i nsn register
is translated to (i) get the addresses of the source operéinde see if the instruction is with an
immediate, and (iii) to identify a branch/jump instructi@io handle the branches/jumps earlier).

The addresses of the source operands are sent to the rétgsiEne register file takes one clock
cycle to make the GPRs ready at the inputs of the Operand Mgrgsrate muxes for operand-1
and operand-2). Simultaneously, the instruction inithe nsn register is moved to thied i nsn
register i.e., to the ID stage. Thus, the register file has bead simultaneous to the ID stage.

When the instruction comes to the ID stagéd (i nsn), its fields are translated to the control-
signals for the subsequent pipeline stages (EX/WB). Sorpetitant steps of the ID stage are:

1. Get the control-signals for the Operand Muxes to selexstiurce operands for the instruc-
tion being decoded. These control-signals select the bofghe Operand Muxes from: (i)
the input GPRs (from the RF), (ii) the result from the instime that just finished its execu-
tion and entered into the WB stage (data dependency), pth@iresult from the instruction
which has finished the WB stage (data dependencies).

110R1200 instruction to write the SPRs.
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2. Getthe control-signals to select the required executiah(ALU/MAC/LSU). This selection
is based on the instruction’s opcode. The opcode is alseganst and sent to the execution-
units. Each execution-unit takes the opcode and executegdtruction if it is valid for it.
However, the result only qualifies from a selected execttioih depending upon the control-
signals.

3. Get the control-signals to manage the pipeline’s timihge execution-units have different
execution time depending on the instruction being execufddALU instructions (except
those with immediate) finish the execution in one clock cyTlee LSU take two clock cycles
for READ (assuming a hit in the DC) and one clock cycle for thRMVE (assuming a hit in
the DC). The MAC unit can accept new instruction every cyebkeépt multiply and divide).
Hence, some logic is needed to cope with these variable tgadimes. The instruction
in the ID stage is translated to know its execution time. Tihigrmation is sent to a block
called Freeze logic which implements the logic to stall tifeeckent pipeline stages for the
synchronization.

Example Suppose the instruction in ID stage was a Load, the Freeze \ith know that
this instruction will take two clock cycles during executiand it will stall the pipeline stages
behind the EX stage for two clock cycles.

4. If the instruction id.mtpsr/l.mfspy calculate the address of the SPR that is going to be writ-
ten/read in the EX stage.

5. If the instruction is with immediate, a 16-bit immediatel (i nsn (15: 0)) is chopped out
and sign/zero-extended to 32 bits.

6. Get the control-signal (used in step 5) to see whethemntiheeidiate should be sign-extended
or zero-extended.

7. Parse out the destination address (in the register file)s dddress is registered for laterly
used in the WB stage.

8. ldentify if the instruction is illegal or not implemented

9. The control-signals (from step 1) select the requiredcmwperands from the Operand
Muxes. These operands are stored in two registers (rA/rB)bmtome ready to be used
by the execution-units.

When all this done, the instruction in the_i nsn register is shifted to thex_i nsn register and
the EX stage starts.

All execution-units are fed with the input registers (rAfidhd the opcode of the instruction and
they execute the instructiéh For multi-cycle instructions, the Freeze logic stalls phnevious and
last stages for the execution time. If the instruction isd/&tore, the EX stage also includes the
LS stage. Eventually, the results from all execution-uoitsne to the inputs of the Writeback Mux.
This result is also fed back to the Operand Muxes to handleldite dependencies. The control-
signal selects the correct result (from the selected exaeunit) which goes to the output register

12 an instruction does not belong to an execution-unit, theaale is no-operation (NOP)



2.7 Maximum Throughput Restrictions on Subsystem 37

of the Writeback Mux and is finally stored into the registes fit the destination address (step 8 in
ID stage). The written result is also fed back to the Operanded to handle the data dependencies.

The exception-model of the OR1200 functions in parallelhe instruction execution. The
exception-block especially looks if the instruction in th& Stage generates an exception, then
calculates the exception-vector and sends it to the GenPefd PC address calculation. When
an exception occurs, the exception-block saves the cucmariext of the CPU by copying (i) the
SR to ESR, (ii) ID_PC/EX_PC/WB_PC (depending on the pigebiage of the instruction which
caused the exception) to EPCR and EEAR, and (iii) also sdrasadntrol-signal to the SPR-block
to update the SR.

2.7 Maximum Throughput Restrictions on Subsystem

A default implementation of the OR1200 core can supportlsimgcle execution for most of
its instructions. However, an implementation without @kiIC/DC) has some restrictions on its
maximum possible throughput. The OR1200’s Wishbone iatexs (IWB/DWB) have registered
outputs. It always takes at minimum one clock cycle to itetianew request (instruction/data) after
receiving the acknowledgment of the previous one. Henaeh eequest takes at least two clock
cycles to complete. In order to reduce the area and poweuogoton of the CPU Subsystem the
used implementation of the OR1200 core does not include dokes and memory management
units. The OR1200 core cannot support single cycle exatwtithout caches since burst accesses
are not possible. Therefore, the maximum throughput of tR&ZD0 core will be two clock cycles
per instruction instead of a single cycle. However, thiotghput is only possible if the core
can fetch a new instruction without further delays from thenmory subsystem or from the bus.
The triple-layer Sub-bus does not need any extra cycle. Memvéhe memory subsystem cannot
support single cycle access for the READ requests becausee afynchronous termination (see
Section2.3.3. Hence, each instruction fetch takes at least three clpdies in the CPU Subsystem.
Consequently, the minimum execution time of a single cyestruction will be three clock cycles.
Thus, the maximum throughput of the OR1200 core in the CPUsytbm will be three clock
cycles for most of its instructions.

2.8 Simulation Framework

2.8.1 Overview

We have discussed all components of the CPU Subsystem. slisehtion, we will discuss how
to interconnect them to build-up the CPU Subsystem. Firstwllediscuss the generation of the
“memory initialization file” needed to simulate the Subgyst There are several formats of memory
initialization files. We have opted the “Intel HexadecimaééRFormat” (IHex) to provide the memory
initialization data to the CPU Subsystem. A specific todiain is used to generate a memory
initialization file for a specific processor. Similarly, a @Noolchain is used to generate the memory
initialization file for the OR1200. In this section, we willsduss: (i) the installation of the OR1200
GNU toolchain, (ii) the generation of the OR1200 memoryiatization file (IHex), and (iii) the
building up of the Subsystem and its simulation.
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2.8.2 OpenRISC1200 GNU Toolchain

Some open source software has been ported to the OR1206rpiafg., Linux anduClinux For
easier software development a GNU toolchain has been atzessfully ported to the OR1200
architecture. The tools include:

- GNU binutils-2.18.50,
-GNU GCC-4.2.2,

- GNU GDB-6.8,

- uClinux0.9.29,

- Linux-2.6.24,

- BusyBox-1.7.5 and

- Orlksim-0.3.0.
More details about the OR1200 GNU toolchain can be foundi18].

GNU Toolchain’s Installation on Linux (Ubuntu 8.10)

The OR1200 toolchain was developed and being maintainechdenCor es organization.
Manually downloading and installing the complete toolohai tricky. Thanks to OpenCores for
developing a script which downloads and installs the latestions of all tools.

The script MOF_ORSOC_TCHN_v5c_or32-elf.shcan be downloaded from tii@penCoresThe
toolchain can be installed on a Windows platform using Cygvei Unix-like shell environment.
More details can be found on ti@menCores website

I was working onUount u 8. 10 distribution and it required some standard developmeris too
to be installed before compiling the OR1200 toolchain. fieteds on the Linux distribution which
tools are pre-installed and which should be installed. dube apt - get package management
tool to perform this installation. The given set @ft - get commands ensures that the required
packages, to build the OR1200 toolchain, have been indtakdter downloading the script, we
need to perform the given steps to build the OR1200 toolchBindefault, this script installs the
toolchain under the current directory but it can be changattalled the toolchain under thept
directory. The toolchain requires at least two GB of freecgpan the local disk to built.

sudo aptget update

sudo aptget —y install build—essential
sudo aptget —y install make

sudo aptget —y install gcc

sudo aptget -y install g++

sudo aptget —y install flex

sudo aptget —y install bison

sudo aptget —y install patch

sudo aptget —y install texinfo

sudo aptget —y install libncurses-dev

[x=========Build the OR1200 GNU Toolchain==========f
sudo mv "down_load_dir"/MOF_ORSOC_TCHN_v5c_or32f.sh /opt
cd /opt

sudo sh MOF_ORSOC_TCHN_v5c_or32If . sh

/x====Follow the prompt, when asked by installer==9=
1st time —>Y
2nd time —> N


http://www.opencores.org/
http://www.opencores.org/
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gedit ~/.bashrc
—> Add
export PATH="$PATH:/ opt/or32-elf/bin"

The GNU toolchain has been installed. It is ready to compild & simulate applications
developed for the OR1200 architecture.

Memory Initialization File

While developing applications for microcontrollers or nojprocessors, we need to convey the
binary information to program them. The memory initialinatfiles are used to provide the binary
information of an application to a specific processor aettitre e.g., the OR1200.

Thelntel Hex file (IHex) is a common format for the memory initialization filel$ is an
ASCII file with lines of text. Each line follows the Intel Hewifmat and contains one Hex record.
These records are hexadecimal numbers representing redehiguage code or/and constant data.
Intel HEX files are mostly used to transfer the program and ttathe ROM/EPROM.

There are three types of Intel HEX files distinguished byrtbgte orders: (i) 8 bit, (i) 16 bit
and (iii) 32 bit. Figure .27 shows a 32 bit Intel HEX file of a sample program executed @n th
Subsystem.

:100100001820F000A82104501860F000A863000037
:1001100018800000A88403DC18A00000A8A5041¢17
:10012000E0A52002BC0500001000000A1500000038
:1001300084C40000D40330009C6300049C84000449
:0C03D00084410004440048009C2100749B
:1003DC0000000001000000020000000300000004Q7
:1003EC0000000005000000060000000700000008E
:0400000300000100F8

:00000001FF

~

Figure 2.27Intel HEX memory initialization file (IHex).

Each line of the file follows the Intel HEX format and compes# 6 parts:

1. Start code: Every line starts with a single character ASCII code (

2. Byt e count: The first two hex digits, after the start code, show the nurobbytes (hex-
digit pairs) in the data field e.g. byte count 0x10 or 0x20 s 16 or 32 bytes of data
respectively.

3. Addr ess: The four hex digits, after the byte count, identify the 16g-endian address
of the beginning of data in the memory.

4. Record type: The two hex digits, after the address, define the type of the fild.
There are six types of data fields identified by the record {@0eto 05). The record type
00 identifies that its a data record containing data and a 1&eutess. The record tyd
identifies an end-of-file record and record tyjfidentifies a start segment address record.

5. Dat a: A sequence oh bytes (2n hex-digits ) of data, where the byte count speaifies
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6. Checksum The last two hex-digits are the two’s compliment sum of tHeesin all fields
except the start code (:) and the checksum itself.

Figure .28 shows the encoding of different lines in the Intel HEX filed#re [2.27]). The
first line contains four data sequences, each of 32 bits.eTtiets sequences can hold either 32-bit
instructions or data values.

| 10[0100[00]1 820F000|A8210450[1860F000{A8630000[37 |
Encoding of first line of iHex file

| 04[0000[03]00000100][F8 |
Encoding of eighth line of iHex file

OoJo00ao [P |

Encoding of last line of iHex file

Figure 2.28Encoding of the Intel HEX format.

Generation of the IHex File for the OpenRISC1200 core

A test program in C/C++ is compiled with the OR1200 GNU toalichto generate the Intel HEX
file for the OR1200 architecture. However, compiling a C paog with the GNU toolchain requires
a few necessary things to do first.

Li nker Scri pt

A linker script is needed which sets up the memory-map of g@ieation by specifying: (i)
the address mapping of the memories, (ii) the place of tedtdata in the memories, the sizes of
these sections, and (iii) the positions and sizes of th& stad heap in the memories. A linker script
for the CPU Subsystem has been given in Appendix (3).

Startup Scri pt

Since all initialized data sections go to the RAM, we have tieradditional code to initialize
these sections. It is better to write a startup script touitelexplicit initialization code in the ap-
plication program. Usually, the startup script includgsafiditional code for the stack initialization
and (ii) code for copying the initialized data and staticiakles from the ROM to the RAM. The
startup script used to generate the memory initializatienféir the OR1200 core, within the CPU
Subsystem, has been given in Appendixi(4).

Makefile

It is easier and preferred to write a makefile to compile ewng together. While compiling
C program, we specify the linker script and the startup st¢oiget the executables. In addition to
the executables, we can also specify other kind of objed tidée generated e.g., (Intel HEX file,
.LST file'®). A sample makefile for the CPU Subsystem has been given ierdgip (A.1.5).

13 Ist file gives information about the memory mapping for differerdtisms. It also contains the disas-
sembly of the .TEXT section (i.e., C code) of the linker strip
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After generating the executable of a C application the OREz6hitectural simulatqOriksim)
can be used to execute the program. Itis good to know thetsasfithe execution before simulating
the program on a real system. To execute the applicationesithulator we need to provide the
executable file of the application and the configuration file.

Configuration File

A configuration file is needed to configure the OR1200 architat simulatorOrlksim). The
configuration file provides the OR1200’s settings e.g., en@nted peripherals (memories, UART
etc.) and the settings of these peripherals (if impleméniEdis file also includes the configuration
settings for the ISS itself. If no configuration file is prosd] the ISS uses a default configuration
file namedsi m cf g. More details about the configuration file can be found in tieial manuals
of the Orlksim simulator [L7, 18].

2.8.3 Simulation Setup for the CPU Subsystem

This section will explain the method to interconnect all gaments to implement the CPU Sub-
system. It will also shed light on converting IHex files to iy data so that it can be loaded into
the ROM of the CPU Subsystem. Finally, it will describe thaglation of the CPU Subsystem.

Incorporation of the Subsystem

Interconnecting all components to implement the Subsygteigure 2.2]) is straight forward
but demands a good care. A correct configuration of the Sslsistem is a critical part while
connecting all components together. The address widthsedbtb-bus Slave interfaces should be
equivalent to the connected Slave component’s addrest withre must be taken while selecting
the identities and the encoding bits for the Sub-bus Slaesfaces to prevent conflicts. These IDs
and encoding-bits must comply to the memory-map specifi¢idaninker script (Appendid.1.3).

For clear understanding, a snapshot of the memory-map lessdb®wn in Figured.29. It shows
the base address and size of the ROM and the RAM. The sectioX\T. Bhows the place of the
application code in the memory.

PROVIDE (__stack = ADDR(.bss) + SIZEOF(.bss) + STACKSIZE FRSET);
PROVIDE (__copy_start=_copy_start);
PROVIDE (__copy_end =_copy_end);
PROVIDE (__copy_adr =_copy_adr);

MEMORY

{
rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x0000FFFF
ram (rwx) : ORIGIN = 0xF0000000, LENGTH = 0x000F0000

SECTIONS
{
.text 0x100 :
{
_stext=.;
*(.text)
_etext=;
}>rom

Figure 2.29Linker script’'s snapshot.

A correct configuration of the Sub-bus has been shown in EiffuB(. In which eight MSBs
have been taken as encoding-bits to identify the Sub-bus $téerfaces. It is important that the
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identities for the ROM and the RAM are valid for their addrepaces. From the linker script, the
complete address space of the RAM always contains OxFO {248)upper eight bits. All addresses
holding 0xFO in their upper eight bits will be forwarded t@tRAM. There must not be any other

peripheral (connected to the Sub-bus) having the same IR ienicoding-bits (no overlapping or
conflict).

entity crossbaris

generic(
—Generics
aw_wb_g : natural := 32;
aw_rom_g : natural := 32;
aw_ram_g : natural := 32;
aw_sbus_g : natural := 32;
aw_scpu_g : natural := 32;
enc_bits_rom_g : natural := 8;
enc_bits_ram_g : natural := 8;
enc_bits_sbus_g : natural := 8;
enc_bits_scpu_g : natural := 8;
rom_id_g : natural := 0;
ram_id_g : natural := 240;
sbus_id_g : natural := 255;
scpu_id_g : natural := 15

)5

port (

— clock and reset

clk_i ;in std_ulogic;

reset_i :in std_ulogic;

Figure 2.30Sub-bus configuration’s snapshot.

After configuring the Sub-bus system it is simple to connéatemponents togather, as given
in Figure R.2.

Simulation of the Subsystem

In order to simulate the CPU Subsystem, we need to load tlet HEX file of a test program
(C/C++) into the ROM starting from the reset address of theL2I® core (see Sectidh4.3. We
need to parse the Intel Hex file to take out the data sequemmstsi€tion/data) and load them into
the ROM.

Parsing the Intel HEX file has been implemented inside the R@®just need to provide the
name of the file to the ROM. The ROM will parse this file and Ida&llhinary data sequences starting
from the reset address of the OR1200 core, Figarg7]. It is clear to see that the data sequences
in the first line of the sample IHex file has been loaded intoR@&/ at 0x00000040 address.

Finally, we need a simple test bench to instantiate the CRigy&tiem and to drive the system
clock and the system reset signals to it. The system clockh®ICPU Subsystem is 100 MHz.
When the test bench asserts the system reset the OR1200etmt® the READ request (from
address 0x00000100) to its instruction Wishbone-interfdé/B). Since the instruction Master in-
terface (of the Sub-bus) has been connected to IWB, the dewdliitranslate the requested address
(Ox00000100). The address qualifies for the Sub-bus Slagdgaae connected to the ROM. The
READ request for address 0x00000100 would be forwardedadr@M. Thus, the OR1200 core
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will fetch the first instruction and execute it, and so on. ldger in the Subsystem, fetching a new
instruction will always take at least three clock cyclee(Sectior2.7).

In order to access the RAM, the processor will generate aetouith an address that qualifies
for the Sub-bus Slave interface connected to the RAM. Théigumation of Sub-bus is according
to the memory-map of the connected Slave components (ROMMRAherefore, an address that
qualifies for a Sub-bus Slave interfaces also lies insideattdress-space of the connected Slave
component.



Chapter

Verification Fundamentals

3.1 Introduction

This chapter focuses on different verification approacimethodologies and technologies avail-
able in the market. It also provides a brief introduction @b@VM, SystemC library and Sys-
temVerilog direct programming interface (DPI).

3.2 Functional Verification

3.2.1 General Description

The main source of functional errors in a design may be ast®utio the following:

ambiguities in product intent

functional specification ambiguities

specification are clear but designer misunderstood it

design implementation errors

The basic objective diunctional verificationis to verify that the initial design implementation is
equivalent to the product intent. The functional verifioatfacilitates to identify if any differences
exist between (i) the product intent, (ii) the functionaésification and (iii) the design implemen-
tation. The complexity of functional verification of a desig an NP-hard problem.

3.2.2 \Verification Approaches

The main objective of functional verification is to make sthrat a design works properly when
stimulated on its boundary. Any error in the design is igddhat cannot be stimulated and observed
on its boundary. These errors include (i) errors that catweotctivated, (ii) errors that can be
activated but never observed and (iii) multiple errors ttzat potentially hide one another.

44



3.2 Functional Verification 45

Different approaches are used to increase the efficiencycamgpleteness of verification, as
described below:

Black-Box Verification

In this approach, a design under verification (DUV) is trdatis a black box (closed box) and
its implementation have no considerations. The DUV is am@®nly through available interfaces
and its internal state cannot be accessed. This verificafipnoach lacks controllability and ob-
servability which makes it difficult to (i) set up a certaimfitional state of the design, (ii) isolate a
particular functionality and (iii) correlate the outpusp®nse to an input stimulus. The test bench
can be developed in parallel to the design implementatiooweyer, it is not possible to verify a
large design as a complete unit due to the discrepancy ofittdibnality against the controllability
and observability.

Gray-Box Verification

In this approach, the DUV is treated as a closed box thoughtisnal structure is known. The
input stimulus is applied through external interfaces asdhirget is to activate the implementation
specific features of the DUV e.g., an internal FSM goes thncaugarticular state sequence. This
approach is used to increase the verification coverage. iyrdean be modified to increase the
controllability or observability. It is calledesign-for-verificatiorf19]. An example of such mod-
ifications is the addition of easily controllable registéwsset up a particular internal state of the
design.

White-Box Verification

This verification approach offers full controllability amibservability of a design such as setting
up a particular state or bypassing some internal units. Sadfication depends on a particular
implementation hence the test bench can be developed oresgmnds implemented.

Combined Black and White Box Approaches

e Bl ack/ Grey Stinulus and White Cbservation

This approach is a combination of black- and white-box eatfon approaches. A DUV is
simulated using black- or grey-box stimulus and assertjteraporal) are used on the DUV
signals (internal and output) for observation (white-bfdd].

e Lots of Bl ack-Boxes in a Large Wi te-Box

This verification approach is used for complex designs. Tdraponents of such designs
are first verified (black-box). Hence, there is no need toafythem once interconnected.
The white-box verification approach is used to verify the pmration of already verified
components19].
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3.2.3 \Verification Challenges

Functional verification may look like a very simple task asffiplace but it is very difficult to
address. The increasing complexity of designs and shagemne-to-market put more demands on
verification engineers to verify complex designs in shatitee. The following challenges must be
addressed to achieve the verification clos@®. [

* Verification completeness

— Maximizing the part of the design that is verified.
— Capturing all scenarios that must be verified.
— Maximizing the use of coverage driven verification methodas.

* Verification reusability

— Increasing the reusability of a verification environmerfitastructure.
— Use of standardized interfaces or functions.

— ldentification of common functionality in the verificatiomvéronment that can be
reused.

Verification efficiency

— Minimizing the manual effort to complete a verification @ci.

— Use of automated systems.

Verification productivity

— Maximizing the work produced manually by verification eregns in a given amount
of time.

— Moving to higher levels of abstraction and leveraging rexmecepts.

Verification code performance

— Maximizing the efficiency of verification programs.

— Increasing the knowledge of tools and languages used tcemmoit the verification
environment.

3.3 Verification Technologies

3.3.1 Overview

Typically, there are three kinds of technologies availailgerform functional verification of
designs, as given below:

¢ Simulation-based verification,

¢ Formal verification and
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* Acceleration/Emulation-based verification.

The emulation-based verification is beyond the scope ofrémert. The following subsections
provide an overview of other two technologies.

3.3.2 Simulation-based Verification

All possible behaviors of a system are required to be corsiderhile verifying that the design
implementation is correct corresponding to its specificati\We can be sure that no design error
has escaped if the complete functionality of a design has beeered in the verification. The
process in which we examine the behavior of an implememtatial increase the confidence in its
specification is usually callegalidation

A simulation is a usual method to discover design errors énvidllidation. In thesimulation-
based verificatiomext state values of a design are evaluated in terms of iterdustate and input
values. Whereas, the future value assignments are scdgdudesign signals by considering signal
delays PQ]. In this type of verification a verification environment isresisted of a test bench and
a design implementation. The test bench is used to applyt vglues to the DUV. The next state
values of the DUV are computed based on these input valuemll¥iit is checked whether the
computed state is the expected state of the design. Alllpessiput combinations are required to
be covered in simulation-based verification to have a futificience in the design. Therefore, this
approach is impractical for designs of a moderate size. é&gasing number of inputs exponentially
increase input sequences that must be verified. Consegugathave to reduce the number of input
stimuli and as a result design errors possibly remain uctkdd21].

3.3.3 Formal Verification

Formal verification is a practical solution to handle lintibas of simulation-based verification.
In formal verification, the behavior of a design is mathewgaly proven i.e., an implementation
behaves according to its specification for all time instanaed for all input variations. Formal
verification proves or disproves a given property of a harévimplementation by using logical and
mathematical equations and metho#d]| In formal verification, we prove mathematical equations
that describe the system. Hence, any property proved bytheaf verification holds for all possible
input vectors applied to that implementation. The majoraatiage of formal verification techniques
is the ability to make universal statements about a propafrty design implementation. These
statements hold for all possible input streams without iregtest vectors to be applied. There are
two major categories of formal verification techniques, iasrybelow:

e Equivalence checking and
* Property checking.

These approaches are discussed in the following subssction

Equivalence Checking

Two formal representations of a design implementationgfeeind after a given transformation)
are provided as input to an equivalence-checking tool. idukcreates a canonical representation
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of each implementation. Since the canonical representaianique for every Boolean function
under an assumed set of conditions (e.g., variable ordefumgving the equivalence of these two
representations is typically straightforward. The moshown input representations of a design to
equivalence-checking tools are RTL and netlist of gateg ddvelopment of such a tool for designs
of larger sizes is a difficult task. Moreover, creating a cacal representation for very large system
is not practical. Therefore, we need to develop some spieiaé or even manual intervention may
be required to reduce the size of a design to formally vetifytimeans that equivalence checking
cannot make a large contribution to main challenges of thetional verification.

Property Checking

Property checking is another formal verification approdwit {s a very powerful technique to
address functional verification challenges. Given a fordeacription of a design implementation
(e.g., an RTL description) property checking verifies thafiven property described in temporal
logic holds for the given implementatior2(]. A design property that is to be verified can be
formulated as an equation of the design’s behavior. Theydgsioperties are specified as a set of
assertions.

The following advantages of property checking make it maweqrful and a suitable technique
for the functional verification.

e The properties can be described at any level of the proghedifscation and the design cre-
ation. They can be collected incrementally as specificaimhdevelopment proceeds.

* Property checking can be performed in the beginning stafif®e design even when a veri-
fication environment is not yet available to provide a teishsh.

« The properties can be used with emulation-based verificatnd simulation-based verifica-
tion.

» Property checking provides the coverage collection thateleded to check the verification
completeness.

» Property checking is a static technique in which no testbear logic simulator is required.

There are multiple languages to facilitate property chagkincluding (i) Property Specification
Language (PSL) and (ii) SystemVerilog (properties are éefin the form of assertions).

Limitations of Formal Verification

Itis an often-repeated myth that formal verification guégas the perfectness of systems. Though
in reality it can significantly increase the confidence in sigie. However, an absolute flawlessness
of systems cannot be guaranteed. Since the verificationadlalys the detection of design faults
and does not identify fabrication faults or faults while atgyn is in use. The verification checks the
correctness of statements according to the formal spegificaf a design which can be incomplete
or faulty itself. Moreover, the verification tools may cantéaults in their programs. Hence, the
formal verification should be taken as an adjunct to but noa asibstitute for standard quality
assurance method&1].
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3.3.4 Formal Verification vs Simulation-based Verification

The following example illustrates the difference betweanmfal verification and simulation-based
verification. We have to show that the Equati@nlj holds by proving that both of its sides give the
same result for all possible input values.

(x+1)2=x+2x+1 (3.1)

In a simulation-based verification, this equation is chddksing concrete input values for the
variablex, as shown in Table3(1). Although Equation .1) holds for all input values of variable
x in Table @.1), the simulation is still not capable of establishing thédity of the equation. In a
formal verification, this equation is proven by applying hehatical transformation rules, as shown
in Table @3.2) [21].

x| x+1)7 | ¥+2x+1
0 1 1
1 4 4
2 9 9
3 16 16
9 100 100
67 4624 4624

Table 3.1Simulation values of Equatior3(1).

1| (x+1)%2=(x+1)(x+1) definition of square

2. (x+1)(x+1) = (x+1)x+ (x+1)1 | distributivity

3. | (x+1)%2=(x+1)x+ (x+1)1 substitution of 2. in 1.

4., (x+1)1l=x+1 neutral element 1

5. (X+1)x = xx+ 1x distributivity

6. (X+1)% = xx4 Ix+x+1 substitution of 4. and 5. in 3.
7. Ix=x neutral element 1

8. (X+1)% =xx+x+x+1 substitution of 7. in 6.

9. XX = X2 definition of square

10. | x+x=2x definition of 2x

11, | (x+1)2=x2+2x+1 substitution of 9. and 10. in 8

Table 3.2Formal proof of Equationd.1).

3.4 Verification Methodologies

Different technologies and multiple facilities are usediwnly verification activities. To produce
an expected outcome for any given project, different mathagdes are used to bring together these
tools and facilities. Most commonly used types of these oddlogies are: (i) assertion-based ver-
ification and (ii) coverage-driven verification (CDV). Thesartion-based verification focuses on
how assertions can be involved throughout the design flovaarmks multiple tools. The coverage-
driven verification is concerned with the best approach &sighing and implementing the veri-
fication project. Both approaches overlap each other becansssertion can be considered as a
coverage point for the coverage analysi§][

The following subsections briefly describe these two mettuxies.
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Assertion-based Verification

In this verification methodology, assertions are used astagial part of the functional verifica-
tion flow. Main components of this methodology are: (i) idfing main properties to be asserted,
(i) deciding when those properties must be asserted aihddiification tools used to confirm as-
serted properties. The main categories of properties that be verified are: (i) operating environ-
ment assumptions, (ii) verification related assumptioiii$,design specifications, and (iv) design
and implementation decisions. It is not necessary thatrajpgrties must be satisfied at all time
during a device operation e.g., any device property maydiaiing the reset sequence. Therefore,
such properties may not be asserted during the reset seguenc

Coverage-driven Verification

It is a simulation-based verification approach particyladveloped to focus on the productivity
and efficiency related challenges faced in any functionaifigation project (see Sectiof.2.3.
The coverage-driven approach improves the verificationpteteness and correctness. The basic
idea behind this approach is the random generation of theukts, which is the main source of
the productivity gained in this methodology. The coveragiection is a necessary part when the
stimulus generation is randomized. As in the absence ofrageeno information is available about
scenarios covered. Some examples of CDV approaches &k thistow.

e Transaction-driven verificationit allows scenarios to be specified at a higher level of ab-
straction.

e Constrained random stimulus generatioft: leads to productivity gains in generating the
scenarios.

e Automatic result checkinglt provides confidence that the design works for all randomly
generated scenarios.

» Coverage collectionlt is a mandatory approach as in the absence of coveragedt wi-
ous which scenarios have been randomly generated.

< A directed-test-based verificatiolit is also a necessary approach because not all scenarios
can be generated efficiently by only using random generaicmiques.

3.5 \Verification Cycle

A basic intention of any verification project is to achieve tomplete verification of all design
features in a minimum possible time and within applicabkotgce limitations. Since these re-
gquirements are very important, a verification plan must balance among them. It is even trickier
as parameters may change throughout the design flow. Fopéxafih the project deadline may be
reduced, (ii) project features may be redefined or changéil)dhe availability of resources may
be changed. An interactive process is followed to find a Béasiolution that reaches this balance.

Figure [3.1] shows the steps involved in creating and executing a vatifio plan. The basic steps
shown in figure are:

1. Building a verification plan,
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Building a verification environment,
Executing the verification environment,

Measuring results and

o N

Reacting to measurements.

In each iteration of this cycle, the verification completisghecked until it reaches the expected
goals.

Build Plan
Refine Plan

Build Env
Refine Env

Measure Exeaute

Figure 3.1 Verification cycle.

Building a verification plan is the core of a verification gdj. It includes following important
steps: (i) identification of all actors that are concernethie project execution, (ii) preparation of
planning sessions and planning documents, (iii) braingtoay of product functionalities, (iv) struc-
turing the verification plan, (v) capturing features andlates, and (vi) formulating the verification
environment and the coverage implementation.

3.6 Verification Environment

3.6.1 Introduction

The verification environment must be implemented in a way ithghould allow all scenarios in
the verification plan to be verified according to the guidelof the target verification methodol-
ogy. Generally, there can be different verification envin@mt architectures available to achieve
this target. This section briefly discusses a verificatiorirenment architecture that facilitates the
application of the CDV methodology and the assertion-baseification methodology. The OVM,
which provides the best outline to accomplish a CDV is alscussed in this section. This section
emphasizes on the architectural blocks of a verificatiofireninent, how these blocks are generally
used in the verification environment and the features thaildhoe supported by each block.

Abstract View of a Verification Environment

A verification environment is connected to a DUV through tberdary signals of that DUV. The
boundary signals can be grouped into interfaces that areeea of multiple ports. Each port
represents interconnected signals that jointly describi@tarface protocol supported by the DUV.
In this way, a DUV is viewed as a block with a number of abstmaierfaces suggesting a layered
architecture for its verification environment. Figufz7 shows a layered architecture of a veri-
fication environment in which the lowest layer componentedlly interact with DUV interfaces.
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Verification Environment

System
Verification
Component
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Figure 3.2 Abstract view of a verification environment.

Each higher layer component deals with increasingly hidgngls of verification abstraction that
correspond to more complex verification scenarizi 22].

This verification environment is structurally comprisedinferface verification components
(IVCs) and system/module verification components (SVC/MY.CThe IVCs provide abstraction
for physical ports to interact with the DUV. The SVCs/MVCs kaause of this feature to inter-
act with the DUV at the level of abstraction provided by theCB/ In this architecture, software
verification components are a specific type of IVCs that adewith the software stack of the DUV.

There are two operational modes for every verification camept, as given below:

¢ Active mode and

* Passive mode.

An SVC in an active mode generates transactions for lower legrification components while
an IVC in active operational mode generates transactioi3UAt ports. A passive verification
component does not include any stimulus generation cagyablit only monitors the verification
environment traffic. These modes must be correctly impleetewhen a verification component is
reused in the next design integration step.

3.6.2 Interface Verification Component (IVC)

The IVC is used to interact with one or multiple DUV ports tlsapport the same protocol. The
IVCs also include supplementary features to monitor aniécotoverage information of the physi-
cal port they interact with. The architecture of an IVC isigeHess towards generating full verifica-
tion scenarios since concurrent interaction with multjpdets is required for this purpose. However,
this architecture is more equipped to give an abstract vidl®/ ports to higher layer verification
components. They monitor the traffic on DUV ports by protadwtcking and coverage collection.
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Figure B.3] shows the architecture of an IVC that contains (i) agentponents and (ii) a bus mon-
itor. Each IVC interacts with a DUV port through an agent comgnt that again includes following
components:

e Adriver,
¢ A monitor and

e A sequencer.

Details about these components are provided in Seciiohd.

Interface Verification Environment

Bus Monitor [«
Agert-n
Agentl
< Monitor & [

- Coverage g buv
& A
S Sequencer N
§’ l_; Driver < >

Figure 3.3Block diagram of the interface verification component.

3.6.3 Module/System Verification Component

A three-layer verification environment is shown in Figuse], which is composed of (i) IVCs, (ii)
MVCs and (iif) SVCs. Although, practically a verification\eronment may have more layers. The
SVCs include system level set-up generation functionalitg perform end-to-end checking. The
internal architecture of MVCs and SVCs is similar becausg thoth interact with higher and lower
layer verification components. The architecture of IVCdfietent since they interact directly with
the DUV ports. The SVCs generally emphasize on the end-ddsehavior of the DUV rather than
the behavior of its individual blocks. In this approach iassumed that smaller blocks have already
been verified.

An SVC emphasizes on (i) bugs in modules that can be verifigdasma part of the overall sys-
tem, (ii) wrong assumptions of the designer about the magjpdeation, (iii) wrong wiring between
system modules and (iv) problems with module interactioissrg from protocol mismatches. Fig-
ure [3.4] shows the architecture of a SVC containing multiple agevtiere each agent provides
the same functionality while interacting with a differeet ®f lower layer verification component.
Each SVC includes (i) the sequencer, (ii) the verificationiremment (VE) monitor and coverage
collector, and (iii) the DUV monitor and coverage collector

To provide information about the current state of the DU¥ W monitorinteracts with moni-
tors in the lower layer verification components. For examgystem monitors track the monitors in
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Module/System Verification Component
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Figure 3.4Block diagram of the module/system verification component.

the IVSs and in the MVCs. Since internal signals of the DUVra#rbe tracked through monitors
attached to the DUV ports, a DUV monitor is used to track thetsnal signals. However, a thin
layer of a wrapper between the DUV monitor and the DUV enattileseusability of the verifica-
tion environment. A combination of both monitors (the VE rntonand the DUV monitor) allows
a gray-box verification approach. A sequencer uses thenvtion provided by these monitors to
generate end-to-end scenarios. In an SVC, the sequencenésally responsible for operations
including (i) the initialization of the DUV and the verifidah environment, (ii) the configuration
of the DUV and the verification environment, and (iii) endeiod scenario generation for the DUV
verification. Thescore boardings used to check for potential problems including (i) datluss
being different than expected, (ii) packets being receivbédn not expected or (iii) a packets not
being received when expected. Ttmverage collectioris an SVC that focuses on collecting in-
formation including (i) the basic traffic of each interfa¢g) the combined effective traffic at all
interfaces, (iii) the states of the internal design, (i\g generated sequences, (v) delay and through-
put information (performance information), (vi) the configtion modes, (vii) resets and restarts,
and (viii) errors observed and errors injected.

3.7 Open Verification Methodology (OVM)

3.7.1 Introduction

The “Open Verification Methodology” (OVM) is the first langyexinteroperable open verifica-
tion methodology that is based on the IEEE standard 182005 SystemVerilog Std. It provides
a methodology and a supplementary library that allows usedgvelop modular and reusable ver-
ification environments. All components in verification eoviments interact with each other via
standard transaction-level modeling (TLM) interfaces.ND&llows full integration with other com-
monly used languages. Following are the important feafpregaded by OVM RO, 22].

» Data Design: OVM provides an infrastructure for class property absingcand simplifies
the user code by offering facilities for setting, gettinglgminting the property of variables.

 Stimulus Generation: OVM provides specialized classes and infrastructure tblereafine-
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grain control of sequential data streams for module-lenel system-level stimulus genera-
tion.

* Building and Running the Verification Environment: The SystemVerilog OVM Class Li-
brary provides base classes for each functional aspecterification environment.

e Coverage Model Design: The incorporation of a coverage model into reusable open ver
ification components (OVCs) is a good practic. OVM offers &erage model design to
implement coverage models efficiently.

* Built-in Checking Support:  OVM provides a built-in checking support that is a good prac-
tice for incorporating the physical-layer and the funcéiblayer checks into a reusable OVC.

3.7.2 OVM and Coverage Driven Verification (CDV)

OVM offers a framework to achieve a CDV that significantly weds the time spent on the veri-
fication of a design by combining (i) automatic test generatiii) self-checking test benches and
(iii) coverage metrics. The main purposes of CDV are (i) tduae the effort and time spent in
generating hundreds of tests, (ii) to ensure a thorougliicetion using up-front goal setting, (iii)
to get early error notifications and (iv) to deploy a run-tiaiecking and error analysis to simplify
debugging. A CDV flow is different from a directed-testingviloln CDV, an organized planning
process is followed to set up the verification goals. Then arstast bench is created to generate
a legal stimuli and to send it to the DUV. The coverage moasitme added to the environment to
measure the verification progress and to identify non-ésedcfunctionality. Checkers are added
in the verification environment to observe undesired beavdf the DUV. After the implemen-
tation of a coverage model and a test bench, simulationsaarehed to achieve the verification.
CDV supports directed-testing in addition to the consgdirandom verification. Although, it is
preferred that most of the work is done through the constthkiandom testing before writing a
time-consuming deterministic test. This test is used tivatet specific scenarios that are very diffi-
cult to reach with random generation.

3.7.3 OVM Test bench and Environments

A test bench developed using OVM is comprised of reusabldicaion environments called
OVM verification components (OVCs). An OVC is a configurabdgification environment that is
ready-to-use for an interface protocol, a module in a desiga full system. Each OVC contains
elements for simulation, protocol testing and coveragkectibn. To verify an implementation, an
OVC is applied to the DUV. The OVC can be an MVC, an SVC or an \&pehding upon its nature
of implementation. An OVC can be reused and configured aguptd its operational requirements.
An OVC can be comprised of different types of elements agogrtb its operational needs. These
components are briefly described below. However, more Idedbiout these components can be
found in the official OVM manualZ2].

Data Item (Transaction)

A data item can be considered as an input transaction to théibWhich its fields and character-
istics are derived from its specification. For example, theeEet protocol specification identifies
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valid data values and attributes of an Ethernet packetgai@ion). A number of meaningful tests
can be generated by randomizing data items and sending théma DUV.

Driver (BFM)

The driver is an active element in an OVC that implementsdbeclto drive a DUV. It repeatedly
receives data items and sends them to the DUV by monitoridgleming DUV signals. For exam-
ple, a driver emulating the logic to control the read/writgnal, the data bus and the address bus for
a READ transfer.

Sequencer

The sequencer is used to generate the stimulus for a DUV byatiamy the generation of data
items. It allows a constrained random generation of datastand on request it sends these data
items to the driver. Each sequencer component has an aesbseqjuence library where its associ-
ated sequences are stored.

Virtual Sequencer

The virtual sequencer is a special component in an OVM vatifio environment that is used to
create multi-sided verification scenarios. It also synola@s the timing and data between multiple
interfaces. A virtual sequencer offers control over thafigation environment for a specific test.
It interacts with downstream sequencers and controls #x@icution of sub-sequences belonging
to their sequence libraries. Hence, a virtual sequences doeneed to have a default sequence
item type. An executed sub-sequence may belong to the litahlvsequencer’s library or to the
sequence libraries of any downstream sequencer (conntedieel local virtual sequencer through a
sequence interface).

Monitor

The monitor is a passive component that only samples DUVasighut does not drive them.
Additionally, it performs checking and collects coverag®imation. The monitor is used to extract
signal information over the bus or DUV interfaces. This mfiation is then translated to data items
(transactions) which are finally available for other comgruis. There are two types of monitors:
(i) agent monitors and (ii) bus monitors. The agent monioa ilocal monitor of a specific agent
that operates on signals and transactions related to teig agly. The bus monitor is responsible
to handle all signals and transactions on the bus or DUVfattes.

Agent

The agent is a container that is used to name, configure aetamnect a sequencer, a driver
and a monitor component. To reduce the work for a test wridd\ suggests the creation of
more abstract containers e.g., multiple agents can be suieapd within an OVC. An agent can be
either a component that initiates transactions to the DUY component that reacts to transaction
requests. An agent should be configurable to operate in areanbde or a passive mode (only
monitors DUV activities).
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Environment

The environment is a top-level component of the OVC. It magtaim one or more agents and
some other components e.g., bus monitors. It enables thenszation of topology and behavior
of including components through configuration propertiésr example, an agent can be changed
from an active mode to a passive mode, or a bus monitor canrperghecking and collect the
coverage information of activities which are not corresting to any single specific agent.

3.8 OVM Class Library

OVM class library is a SystemVerilog based class librarytaiming all essential components
required to implement well-structured, configurable ardsable verification components and ver-
ification environments. The library is consisted of bases#a, macros and utilities. The verifica-
tion environments are developed by hierarchically endajisg and instantiating all components.
These components are controlled by a set of phases toirgtialn and complete the tests. The
base class library defines these phases. However, thesesptes be extended to meet specific
needs of a project. The library provides a vigorous set df-buifeatures that are needed for the
verification e.g., print, copy, etc. Using the OVM librarycneases the code readability because
each parent class predefines its component’s functionseitilirary. Moreover, the class library
provides a flexible environment construction (i.e., OVMttag) to facilitate the implementation of
verification environments. More details about the OVM liyrand the OVM factory can be found
in the official OVM manual 22].

3.8.1 Transaction-level Modeling (TLM)

All OVM components communicate with each other throughddad TLM interfaces. This stan-
dard communication infrastructure improves the reudghili components. An OVM component
implementing a TLM interface can interact via its interfagih any other component that imple-
ments this interface. A set of transaction level commuivoanterfaces and channels are provided
by OVM for the transaction level interconnection betweemponents. In this way, each compo-
nent is isolated from changes in other components.

Transaction Level Communication

Transaction level interfaces define a set of methods thatttaksaction objects as arguments. A
set of methods for a particular interface is defined by a Thdit while their implementation is
provided by a TLMexport When a port is connected to an export, calling a port methedlts in
the execution of its implementation provided by the exp@¥M provides atlm_fifo channel that
enables components to operate independently. This chempleiments all TLM interface methods
necessary for such a communication. A producer puts theacdion into this FIFO channel while
a consumer independently fetches this transaction. Thaere provides both blocking and non-
blocking interfaces. A special type of TLM communicationpi®vided by OVM which is called
analysis communicationhis communication is for components such as monitorsghvimiay need
to generate a stream of transactions without taking cats tdrigets (whether there is any connected
or not). This TLM communication is supported by providing @nalysis port, the analysis export
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and the analysis fifo channel. More details about this conication can be found in the official
OVM manual p2].

3.9 SystemC

SystemC is a C++ class library developed to support (i) sydevel designs, (ii) hardware ar-
chitectures, (iii) cycle-accurate models for softwareoalhpms, (iv) interfaces of SoCs and (v) exe-
cutable specifications. The SystemC class library was atdimbd in 2005 as IEEE 16862005.
Currently version 2.2 of the library is currently availak&ile version 3.0 will be available in near
future. The later version will be extended to cover the miodebf operating systems and also to
support the development of models of embedded software.edder, additional libraries can be
provided to support a particular design methodology eyste®nC Verification Library (SCV). The
Open SystemC Initiative (OSCI) developed the SystemC Clésary.

Following are the key features provided by SystemC:

e sc_module: Itis a C++ class that is appropriate for defining hardware ufexithat contain
parallel processes.

* A method of defining functions that model parallel threaflsamtrol within asc_nodul e.
e sc_port and sc_export:  Two classes representing points of connection fec arodul e.

 sc_interface: This class tells about software services that are requiyesb_port class or
provided by esc_export class.

e sc_prim_channel: A class representing channel connections.

 data types: SystemC supports 2-state and 4-state logic data types.

Recently, the TLM group of OSCI issued the second versionrah3action Level Modeling,
which defines an interface that is used to write high-levihssre models of hardware. More details
aboutSystemCandOSCI TLM-2.0can be found in their official manualg3, 24].

3.10 SystemVerilog Direct Programming Interface (DPI)
3.10.1 Overview

This section gives a brief overview about the SystemVeriidg). Details about the DPI can be
found in the officialSystemVerilog manudR5].

SystemVerilog provides an interface to interact with fgreprogramming languages (such as
C/C++). The interface is called SystemVerilog Direct Peosgming Interface (DPI) and it is partic-
ularly to facilitate C language. The DPI makes it much easieall C functions within SystemVer-
ilog and to call SystemVerilog functions within C. A big adwtage of the DPI is the reusability of
existing C code without having knowledge of SystemVeril&y. using the DPI, we only need to
define a C linkage semantic, though the actual implantatfdheoforeign programming language
remains transparent.


http://www.cse.iitd.ernet.in/~panda/SYSTEMC/LangDocs/UserGuide20.pdf
http://www.embecosm.com/appnotes/ean1/sysc_tlm2_simple_or1k.pdf
http://www.vhdl.org/sv/SystemVerilog_3.1a.pdf
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C functions can be called within SystemVerilog by usingithport “DPI” declaration. These
functions and tasks are calledportedfunctions and tasks. It is necessary to declare every iragort
task and function. It is calleiinport declaration To call SystemVerilog functions and tasks within
C, they must be specified in tlegport “DPI” declaration within SystemVerilog. These functions
and tasks are calleexportedtasks and functions. All DPI functions are supposed to fitfitir
execution instantly in zero simulation time. There is nockyonization mechanism provided by
the DPI except data exchange and transfer of control. OrdyeByerilog data types can be passed
between SystemVerilog and foreign languages through itegand exported function/task argu-
ments and results. However, there are some restrictioneeondtations of these data types. An
example of an import declaration and an export declarasogivien below. More details can be
found in official manual of SystemVerilo@¥§].

e Inport Decl aration

import "DPIC" function int calc_parity (inputint a);

e« Export Decl aration

export "DPKC" my_cfunction = function myfunction ;



Chapter

Functional Verification of CPU Subsystem

4.1 Introduction

This chapter provides details about the functional vetificaof the Subsystem and its compo-
nents. Sectiod.2 describes the verification plan and the implemented testtbar the functional
verification of the memory system. SectidiB3 gives details about the verification plan and the
implemented test bench which was used for the functionafieation of the triple-layer Sub-bus
system. Sectiod.4 outlines the verification plan for the functional verificatiof the OR1200 core.
This section also describes the development of a goldenlineklieh was used as a reference model
for the verification of the OR1200 core and developed by usiegSS of this processor. Further,
this section also describes the implementation of a Systamapper around the ISS so that the
golden model can incorporate the verification environmdiiite development of a SystemVerilog
wrapper around the OR1200 (DUV) will be also described is g#ction. Sectiod.5 describes
the development of a verification environment for the fumaai verification of the OR1200 core by
following the OVM. This section also outlines the architeet of this verification environment and
describes the test bench (employed inside the verificatigimnament).

4.2 Functional Verification of Memory System

4.2.1 \Verification plan

We planned to use SystemVerilog for the constrained randenification of the memory system
of the CPU Subsystem. As this memory system includes a ROMadR@AM memory with Wish-
bone interfaces. The ROM was implemented by using a RAM éaitl both memories use same
Wishbone interface. Therefore, the functional verificatad the RAM (only) will be discussed
here. However, we separately need to verify the ROM init#&ion with an Intel Hex file. The plan-
ning of a verification environment for the functional ver#iion of this memory system includes the
following key features.

¢ An interfacefor the structural connectivity between the test bench hadXUV.

» Development of dus functional modetomplying the Wishbone specifications.
60
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< Development of d@est library containing the test cases.
e Development of @est bench

These components are discussed below in detail.

Interface

SystemVerilog provides amt er f ace construct for:
» modeling the communication between the functional blpcks
« the structural connectivity between the blocks,
 easier migration from the system level designs down to thle dRescription and
 easier reusability of the designs by hiding the commuinoadetails.

The interface includesnodportdeclarations to specify the directions of the ports forediht
blocks which can be connected through this interface. Thezawo types of modports specify-
ing the port directions for the Master blocks and the Slawehkd. The interface also contains a
clocking blockfor the cycle based semantics where the DUV signals (inpdibaitput) are sampled
(registered before a clock edge) and synchronized at tiokiolp events.

Bus Functional Model

The implementedbus functional modglBFM) in this verification environment replicates the be-
havioral model of a Master component with a Wishbone interfaTherefore, this BFM can be
used as a Master component complying the Wishbone speicifisat This BFM includes a Sys-
temVerilog interface (Section.2.]) for the cycle based communication with the memory system
(ROM/RAM). This function model implements the followinghmeriors of a Wishbone Master com-
ponent.

e Idl e cycl e: places an idle cycle.

e Si ngl e READ request : sends asingle READ request for a given address, and receive
the read data back.

e Singl e WRI TE request : sends a single WRITE request by supplying the address and
data.

e Bl ock READ request : sends a block of READ requests by providing an array of ad-
dresses, and gets the received data array back.

* Bl ock WRI TE request : sends a block of WRITE requests by providing arrays of ad-
dresses and data, respectively.

This BFM drives the signals to the DUV and samples them thidtsginterface which complies
the Wishbone interconnection standard.
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Test Library

This test library RAMIest ) is basically a SystemVerilogr ogr amwhich contains several types
of planned tests for the functional verification of the meyngystem. The behaviors of the BFM
(Section4.2.7) are used to execute these tests. This library includestlmsving tests.

1. Sequenti al single WRI TE/ READ access test

This test generates a sequential address, randomizesitedatand sends the WRITE request
to the DUV by using the'single WRITE request” behavior of the BFM. After the successful
completion of the WRITE request this test sends a READ radoeshe same address by
using the'single READ request” behavior of the BFM. Then it compares the written data with
the received one. If the test passes, this whole proceduvepésited again for next sequential
address until it covers the complete address space of the DUV

2. Random si ngl e WRI TE/ READ access t est

This test is same as tlisequential single WRITE/READ access test” except that it generates
random addresses (instead of sequential ones). It is tdheseal-time scenarios where
memory accesses are usually for random addresses. Thispests the testing process for
the number of times set by the user.

3. Random bl ock WRI TE/ READ access test

This test randomly generates arrays of addresses and ddtaeads the block WRITE re-
guest to the DUV. It uses thblock WRITE request” behavior of the BFM to write this data
array to the memory. After a successful completion of thelbM/RITE request this test
sends a block READ request by using thieck READ request” behavior of the BFM. Same
address array is supplied to this behavior which was usedriting data array. The received
data array is compared with the written data array. If thepgesses, the whole process is
repeated again with new randomized arrays of addressesaaad This test repeats for the
number of times set by the user, who can also set the lengttedflock.

4.2.2 TestBench

RAMTest bench is the test bench used for the functional verification of t#aVR(DUV), which
instantiates all components, connects them together aresdhe system clock and the system reset
signals to these components. This test bench includes:

¢ a RAM component (DUV),
e a SystemVerilog interface,
 abus functional model (BFM) and

e atestlibrary (RAMTest).

'ROM is a read only memory, these tests are only for the RAMication.
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Figure [.1] shows the architecture of the RAMTestbench. By considetive BFM as a virtual
Wishbone Master component, the test library uses it to rifierdnt tests (e.g., Random block
WRITE/READ access test) on the DUV for its exhaustive fumaail verification. The verification
results of these tests will be given in Sectién3j.

RAMTestbench

Test-library RAM
— | (32 bits)

BFM

K Whbsignals >

Wh_if
Wh_if

Figure 4.1RAM Test bench.

4.3 Functional Verification of Triple-layer Sub-bus

4.3.1 \Verification plan

We planned a CDV of the Sub-bus system using SystemVerilsgdeonstrained random stimulus
generation. Additionally, we decided to implement a cogermodel to determine the verification
closure. To verify the Sub-bus system we enhanced the mxiserification actors those were
used in the verification environment of the RAM componentl édhancements in the existing
verification environment and new developments are giveovbel

¢ The development of a configurable test library (initiatmy)enhancing the existing test library
(RAMTest) used for the verification of the RAM.

¢ The implementation of a coverage model.
¢ The development of a test bench (Sub-bus-Testbench).

These components are discussed below in detail.

Test Library (initiator)

The Sub-bus system has three Master interfaces and four Bl@rfaces. Hence, we planned to
connect three BFMs (Master components) and four RAMs (Staveponents) to these interfaces
respectively. As the test library (initiator) uses thesavBRo drive different tests on the DUV, we
needed to make this library configurable for each particBRN. This test library (initiator) is an
extension of the RAMTest library which is capable of drivimgly a single BFM and of generating
the addresses for a complete given address space. Therelmgedled to enhance the RAMTest
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library in such a way that it can support three BFMs and diadgiven address space into four
address spaces, one for each Slave component (RAMS).

To have a functioning system, we need a correct configuratidhe Sub-bus itself and of the
Master and the Slave components connected to it (see S@cch To access a Slave component
through the Sub-bus system, a Master component has to seategss that qualifies the address
space of this Slave component. As the test library is resplensf generating the addresses for
the BFMs, it was required to make it configurable so that it ganerate the addresses within a
specific sub-space of an address space. Hence, this tesyl{britiator) was required to divide the
total address space of the Sub-bus system into four sulesp@ibe addresses generated for a Slave
component include the slave-id in the MSBs (configurabld)e address space of each connected
Slave component is divided into three sub-spaces, one &r B&EM. A BFM can only access this
particular address space inside the memories. This ssbmivbdf the Slaves’ address spaces is
necessary to handle the overlapping problem.

Example Figure §.2] shows a 64 Kbytes RAM having total address space : 32’h00006-
32'h0000FFFF. The accessible address space for the BFM3RIs00000000— 32'h00005555,

for BFM-2 it is: 32’h00005556— 32'h0000AAAA, and for BFM-3 the accessible address space
is: 32’h0000AAAB +— 32’h0000FFFF.

RAM
(64 Kbyteg

00000000

BFM 1

00005555
00005556

BFM 2

00MAAAA
00MAAAB

BFM 3

0000FFFF

Figure 4.2RAM address space subdivision.

We need three instances of this test library, which are cordiyto drive three BFMs. Each
instance drives a single BFM and generates all addresskmhie accessible address range of its
BFM. However, each BFM can randomly access the connectedstamponents over the Sub-bus
system. Each instance of the test library (initiator) caecete all tests which are provided by the
RAMTest library (see Subsectiagh?2.1).

Coverage Model

A coverage modekas implemented to determine that the DUV has been exposesdtsfactory
variety of the stimuli and it is functioning correctly. Weeated a database 8f/stemVerilog bins
to store a histogram of the addresses accessed by each BFlaWwed to cover the requested
addresses by the BFMs and to cover them at the Slaves’ sidedrichis way, we will be able
to cross-verify how many times an address was accessed byviaaB& how many times a Slave
component correctly responded the requests for this asldres
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4.3.2 Testbhench

This test benchSub- Bus Test - bench) was used for the functional verification of the Sub-bus
system. It instantiates all components those are requinethé verification, correctly configures
them, connects them together, and drives the system clatkhensystem reset signals to these
components. The including components are

e a Sub-bus system,

four RAM components,

three interfaces,

three bus functional models,

three test libraries (one for each BFM) and

a coverage model.

Figure (.3 shows the architectural look of the test bench that was tmetthe functional verifi-
cation of the Sub-bus system. The verification results arengn Section %.4).
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Figure 4.3 Test bench for triple-layer Sub-bus system.
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4.4 Functional Verification of OR1200 Core

4.4.1 Verification plan

The functional verification of a heavily pipelined procesga challenging task. We planned
a simulation based verification of the OR1200 core by usimgctimstrained random generation
methodology. We planneddey-box verification approach. Therefore, it was required to monitor
the internal signals of the OR1200 core along wittef@rence moddbr the comparison. We used
the architectural simulator (ISS) of the OR1200 core asatden model. To develop a configurable
and reusable verification environment, we planned to folleeyOVM. As the verification environ-
ment uses SystemVerilog interfaces to communicate wittbidy (OR1200), we implemented a
SystemVerilog wrappesround the OR1200 core. This wrapper provides interfacesd¢ess the
DUV. Details about these developments will be discussest Iatthis section. The following con-
cerns are the most important to be taken into account whéilenphg the functional verification of
the OR1200 core.

* What to verify.
* When to verify.

* How to verify.

These points are discussed below in detalil.

What to verify

Since the OR1200 core is a complex implementation and iifcagion is a challenge, we had
to identify the most important aspects those must be verifib@se aspects play a vital role in the
correct execution of this processor. The correct workinghese aspects verifies that the core is
correctly operational. The aspects taken into accountstezllbelow.

 Verify, if the OR1200 always generates a correct programmtar (PC).

Verify, if the OR1200 correctly updates its state in itsawyision register (SR).

Verify, if the OR1200 correctly saves its context in casamexception (ESR/EEAR/EPCR).

Verify, if the OR1200 always stores correct data to coroesiing addresses in the data mem-
ory.

Verify, if the OR1200 correctly stores the execution ré&sul its general purpose registers.

When to verify

To identify the correct time to monitor the DUV'’s featureseanust have a thorough understand-
ing of the core’s architecture and its working, particytaabout the instruction pipeline execution
(Section2.6.5. This task becomes more complicated when the exceptiorhand the variable ex-
ecution time of different instructions are taken into agdoWVe also need to handle jumps/branches
and delay slot executions. Another important side is to idenghefreeze logic andflush-pipeline
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logic of the OR1200 core. These two logics vigorously cdntine OR1200 pipeline execution.
However, all participants those are required to be monit@rer egi st ers. Hence, they all have
enable signals for their update. These register enablalsigsentify the correct points to monitor
these registers. However, along with these enable signalalso need to manage the pipeline’s
control logic, the exception control logic, the freeze tognd the flush-pipeline logic. Since these
logics control the register enables. In pipeline executdifierent pipeline stages may operate on
different registers or may operate on different parts ohglsiregister. Thus, identifying a correct
execution stage to monitor a register is very important.

How to verify

We need a robust verification environment that feeds theuicisbons to the OR1200 core, handles
Load/Store requests from the core, and correctly monite@smportant registers of the core. Addi-
tionally, it is very important for an exhaustive verificatito fill the complete instruction pipeline of
the core and account the dependencies between the instisicti this verification environment, an
instruction is first sent to the golden model (ISS). Afterexgcution the status of the golden model
is obtained and stored. This instruction is then sent to th®/[@and all important registers are
monitored when this instruction updates them in differapejine stages. These registers’ values
are compared with the status which was received from the TB&ISS executes every instruction
in zero time while the OR1200 core is a hardware implemeamaitan be registered) having five
instructions in its pipeline. Hence, this verification @oviment must include a synchronization
mechanism between the golden model and the DUV. More dethdst this verification environ-
ment will be given in Sectiorn4(5).

4.4.2 Instruction Set Simulator as a Reference Model

We used thdnstruction Set Simulator (ISS) of the OR1200 core as a reference model for the
functional verification of the core. This ISS is an architeat simulator, name@r 1ksi m is a
generic simulator capable of emulating OpenRISC1000 t&ciuire based systems. It is an open
source simulator that can be freely downloaded from@penCores It provides high-level fast
architectural simulation for an early code analysis andréopmance analysis of systems. It sup-
ports all peripherals and system controller cores thosesapported by OpenCores. The latest
version (0.3.0) of the Orlksim provides a network socketrémnote debugging with a GNU de-
bugger (GDB) support for different environments (OR1K @&or model, memory configurations
and sizes, configuration of peripheral devices). This nawioe also offers the choice to either use
the simulator standalone or as a library. The new versianiatdudes an OSCI TLM 2.0 interface.
This ISS is written in C. Its standard configuration can mdtel main memory, the CPU, and a
numbers of other peripheral$?, 18].

To use the ISS as a golden model, we needed to embed the @X&8nnto a SystemC module.
The module is also required to support thieect Programming Interface (DPI) to incorporate the
SystemVerilog based verification environment. The develqt involves several steps, as given
below.

« Modify the existing Orlksim (ISS) library to provide a sédtpmblic interfaces to access it.

« Define a SystemC module as a wrapper around this libraryctrataccess its public inter-
faces.


http://www.opencores.org/
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* Implement the DPI support inside this SystemC wrapper abitltan be integrated within
the SystemVerilog based verification environment.

These all steps are individually discussed below.

Compiling Orlksim Library

The installation of the OR1200 GNU toolchain package (®@c#.8.2 includes the Orlksim
simulator but it only works standalone for an early code ysialand a performance analysis of the
system. In order to use this simulator as a reference modahe®ded to use it adibrary with a set
of public interfaces to access it. This library can be coméduo model OpenRISC1000 architecture
based systems. The Orklsim library, used in this projecs, eaafigured to model only the CPU
and somegeneric peripherals. It does not model the main memory, the cache system, the ngemo
management or other peripherals, since our DUV does natdectuch components. Similar to the
standalone implementation of the simulator, a configunafile is used to configure the library to
model different components in the system. The Orlksim @) &fers the facility to use itself as a
library, and provides two upcall functions to call up to thes@mC model of which it is part, to read
and write from the peripheral address space. However, waeoge implement an additional upcall
function to access the status of the ISS. Further, we alsdege® implement &irect Programming
Interfaces (DPI) to access this library within the SystemVerilog basedfication environment.
These developments are discussed in the subsequent suhsedtere we will discuss how to
compile the Orlksim library with Questasim 6.5 on an UbunfiD&latform. The involved steps to
compile this library are given below.

— Download the Orlksim-0.3.0
— untar it
— Set environment variables:
CC=/gcc—4.1.2—linux_x86_64 /bin/gcc
CXX=/gcc—4.1.2—linux_x86_64 /bin/g++
Note: The GCCfor building the library has to be the same as the
simulation uses.
— Make a directory Orlksim-0.3.0, having the subdirectories: kource and /build
— Move the contents of the Orlksim0.3.0 to the Orlksim-0.3.0/source
— Go to the Orlksim-0.3.0/build
— Configure: ../source/configure —prefix=/home/.../orlksim-0.3.0/install
——enable—debug
— make all install

When the compilation is finished, we get a header file that defthe public interfaces to the
Orilksim library. This header file should irOr1ksim-0.3.0/install/include/or1ksim[&3].

Using Orlksim as a Library

In the standalone implementation of the Orlksim,rthen function initializes the ISS; after that
it stays in a loop and executes the instructions. Howeveherlibrary implementation thisai n
function is replaced by a series of functions those form iiterfaces to the library. The header file
(oriksim.h) contains the declaration of these functions while theplamentation is provided in the
libtoplevel.c file. These functions are described below.
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eorlksiminit (...)
This function initializes the simulator. It has severaluargents those are given below.
Config_file: This file provides the configuration data to the simulator.

Image_file:This argument is used to pass the program image to the 1SSefaylt the ISS
takes the .ELF executable format of program images. Howdévean also take the .IHex
executable format. Since we want to fetch instructions aatd tiom external test bench, an
empty .ELF image will be passed in this argument. A sampletgfBpF executable file has
been given in AppendixA.2.1) [26].

To read or write from the peripheral address space the 1S8snteebe able to call up
to the SystemC model of which it is part. A standard impleragomn of the ISS library
provides two upcall functions to read and write from the jpleeral address spaces. These
functions are defined by the (@pr and (ii) upw, fourth and fifth function parameters of the
orlksiminit(). Inthe golden model we modified these upcall functions atingrto our
requirement. In our implementation the ISS uses tip * upcall function to read the next
instruction from the SystemC model. If this is a Load instiat the same upcall function is
used again to read data. However, in case of a Store instnuitte ‘Upw”’ upcall function is
used to write data up to the SystemC model. Since it was redjtir access the internal sta-
tus of the ISS (after every instruction’s execution), adhipcall function ¢pcpustatus ) was
implemented in the ISS to write its status up to the System@aind his ISS status includes:
(i) the PC register, (ii) the supervision register (SR)) {ie exception supervision register
(ESR), (iv) the exception program counter register (EP@R)the exception effective ad-
dress register (EEAR), (vi) all general purpose registéiRRs) and (vii) the instruction that
was just executed on the ISS.

The implementation of these upcall functions is providedh@ SystemC model (C++),
while the ISS (C) can access them on demand. The functios batlween C and C++
could be awkward. Therefore, upcalls were implementestatic functiondn the SystemC
model. The SystemC model calls thelksiminit (). To enable the upcall functions for
invoking the member functions of this SystemC model a poi(dkass_ptr) to this Sys-
temC module instance is passed as an argument to these fymzdibns. Third argument
(class_ptr) is the pointer to the SystemC module class that initialites simulator by
calling theor 1ksiminit().

int orlksim_init( const char xconfig_file ,

const char ~image_file ,

void xclass_ptr,

unsigned long int (xupr)( void xclass_ptr , unsigned long int addr,

unsigned long int mask),

void (*upw)( void »class_ptr,unsigned long int addr, unsigned long
int mask, unsigned long int wdata),

void (xupcpustatug( void xclass_ptr, void xcpu_statusPtr));

Details about the implementation of the upcall functionthim SystemC model can be found
in Section ¢.4.3.
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eorlksimrun (...)

This function is used to run the simulator for a specific petraf time, passed in its
argument (in seconds). The duration of -1 runs the simufatever.

int orlksim_run ( double duration );

Beside these functions tleelksim.h header file also includes some other functions those are be-
yond the scope of this report. Details about these functo@msbe found in the official Orlksim
manual [L7,19].

Orlksim Library and Generic peripherals

The library implementation of the Orlksim makes provision dny additional peripheral to be
implemented externally. Any access (READ/WRITE) to thisipigeral's memory map generates
the upcall to an external handler.

Generic is a new extension in the Orlksim to model external peripbgia, 18]. Any READ
or WRITE access to the memory map of an implemented genemponent generates an upcall.
All peripherals of the Orlksim are configured in a configunatiile (.cfg). A new sectiorgeneric
is introduced in this file to describe the external periplserdultiple external peripherals can be
described by multiplgeneric sections. Each generic section includes multiple paras&iespecify
an external peripheral.

section generic

enabled = 1
baseaddr = 0x00000000
size = OX7FFFFFFF

byte_enabled
hw_enabled
word_enabled
name

end

The parameters ofgener i ¢ component are as given below.

 enabled = 0|1

The option 1 is to enable and the option 0 is to disable this K&a¢hment and AT Attachment
Packet Interface (ATA/ATAPI). If you do not specify the veludefault is 1 (enabled).

* baseaddr = value
It is the starting address of this generic peripheral’'s nrgmuap. Its default value is 0 (not a
sensible value). The size of the memory mapped registeespaontrolled with a parameter
i.e., size. Itis described below.

* size = value
This parameter controls the size of the generic periptseeraémory mapped space in bytes.
Any access (READ/WRITE) from the ISS to this address spaasg@pddr— size-1) will be
directed to the external interfacepgall). The value of this parameter should be in power of
2.
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* name = “str”
This string specifies the name of the generic peripheral.
« The generic peripheral can be configured to have suppotiyfer, half-word and word ac-
cesses. If the value is 1 (default) the respective suppertiabled.
byte_enabled = 0|1
hw_enabled = 0|1
word_enabled = 0|1

Our requirement for the golden model is to generate the Ilgpfal a complete 32 bit address
space (0x0000_0006> OXFFFF_FFFF) which is byte-addressable. The maximum ketecan be
supported by a single generic peripheral is Ox7FFF_FFFe&sbytence, three generic peripherals
were needed to cover the complete 32 bit address space. Métbanfiguration the golden model
(ISS) always generates the upcalls either to READ/WRITE dato fetch a new instruction. The
verification environment feeds the instructions and datheédSS. A sample configuration file used
in this implementation can be found in Appendix 2.2).

Modification in ISS

We implemented a third upcall function inside the ISS toevit$ status up to the SystemC model
after the execution of every instruction. More details altbis modification can be found in Ap-
pendix A.2.3).

4.4.3 SystemC Wrapper around Reference Model

After modifying the Orlksim (ISS) and generating the lilgrave needed to implement a SystemC
wrapper around this library so that the reference modelmzorporate the verification environment.
The key features this SystemC wrapper was required to ingri¢are as given below.

« Provide the implementation of the upcall functions (umwuupcpustatus).
e Calltheor 1ksiminit() function and pass its arguments.
¢ Run the simulator forever by calling thoe 1ksi m run() function in a thread.

» Provide aDirect Programming Interface (DPI) for these upcall functions to be accessible in
the verification environment.

¢ Implement a synchronization mechanism between the S¢teptalls and the DPI func-
tions.

* Handle the host machine’s byte order (little-endianfanglian).

e Provide the implementation to qualify valid data bytesdesthe data array by using the
selection bits.

» Parse out the required status information of the ISS anckritakailable to the DPI functions.
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Upcalls

Three static member functions were implemented in the 8yStesrapper to provide the imple-
mentation of the upcall functions of the Orlksim library. €6k static functions take a pointer of
the SystemC module’s instance which starts the Orlksim T8. pointer is provided as a third
argument to ther 1ksi m i nt function. Each static function calls inside another C++sslmem-
ber function. This member function actually provides th@lementation of its respective upcall
function. When the ISS generates an upcall to its correspgndterface function, it simply calls
this static function because its interface function is anfayito a C++ static function. This static
function calls a member function which actually implemethis upcall.

The piece of code (given below) is taken from the implemémtadf this SystemC wrapper
class. It gives insight about the upcalls’ working in the ppar. Thest ati cWit eUpCPUSt at us
is a static function of the wrapper. Its pointer was passethéoupcall i.e.,upcpust atus (in
the or 1ksi mini t) for writing up the ISS status. When the ISS generates thiglypsince the
upcpust at us is a pointer to thet ati cWi t eUpCPUSt at us function, the ISS in fact calls this static
function which actually calls a C++ member function insidei ¢ eUpCPUSt at us). This member
function parses the incoming status information of the 18& rmakes it available to its respective
DPI function.

/*===Access the CPU state after every instruction’'s exectoanF===x/

void orlk_sc_module_dpi :: staticWriteUpCPUStatusvpid «instancePtr ,void »cpu_statusPtr){
orlk_sc_module_dpixclassPtr = (orlk_sc_module_dp#4)instancePtr;
cpu_state_up*cpu_state_up_ptr = (cpu_state_up)cpu_statusPtr;
classPtr—>writeUpCPUStatugécpu_state_up_ptr);

} /1 staticWriteUpCPUStatus ()

The definition of thest at i cW it eUpCPUSt at us function is given below.

static void staticWriteUpCPUStatusoid *«instancePtr ,void *cpu_statusPtr);

Orlksim_init Initialization

Theor lksiminit library function is called within the SystemC wrapper tatialize the ISS.
A configuration file, an empty ELF file, the wrapper’s own pem(itself starting the ISS) and the
pointers to its static functions are passed as argumentsstblirary function, as given below.

orlksim_init( "../simple.cfg",
"../lempty_elf",
this ,
staticReadUpcall ,
staticWriteUpcall ,
staticWriteUpCPUStatus
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Direct Programming Interface

As we have discussed in Sectiagh10), the implementation of theithported DPI functionsis
provided in a SystemC model and it is imported inside a Syg&itog model by using thénport
“DPI” declaration. On the other hand, the implementation of the6rted DPI functiorisis pro-
vided in a SystemVerilog model and it is exported to a Systenmu@el by using thexport “DPI”
declaration. In this verification environment we only n@eported DPI functions to be called within
a SystemVerilog based test bench while their implememasi@rovided inside the SystemC wrap-
per of the golden model. We implemented thi@ported DPI functions in the SystemC wrapper
respective to three upcall functions. The hookedaugmber functiorfsof the SystemC wrapper
take data and instructions from thesgorted DPI functions and feed the ISS with this data and
instructions. These member functions also make the siondattatus and data available to these
imported DPI function so that it can be sent to the test bench. The definition of ttheseimported
DPI functions in the SystemC wrapper is given below. The implementatiothe$eimported DPI
functions is not provided in this report.

int sv_readUp¢onst int rinsn, const int rdata, int *read_addr ,int *read_addr_mask);
int sv_writeUp (int *waddr, int ~wdata);
int sv_writeStatusUp( cpu_state_refiss_status);

All imported DPI functions must be registered in the SystemC module by using
SC_DPI_REGISTER_CPP_MEMBER_FUNCTION().

SC_DPI_REGISTER_CPP_MEMBER_FUNCTION ("sv_readUp", &&r sc_module_dpi ::sv_readUp);

SC_DPI_REGISTER_CPP_MEMBER_FUNCTION ("sv_writeUp", Blk_sc_module_dpi ::sv_writeUp);

SC_DPI_REGISTER_CPP_MEMBER_FUNCTION ("sv_writeStatys" ,
&orlk_sc_module_dpi::sv_writeStatusUp);

All imported DPI functions must be declared in the SystemVerilog environment, as diesow.

import "DPI-SC" context task sv_readUp (nput int rinsn, input int rdata ,

output int read_addr ,output read_addr_mask);
import "DPI-SC" context task sv_writeUp (output int waddr, output int wdata);
import "DPI-SC" context task sv_writeStatusUp¢utput iss_cpu_status iss_status);

The DPI identifies an imported function by its name only (npite parameters). Hence, only
one copy of overloaded functions can be supporfadl |
Not e: The composite data types (e.g., structure/union) beintgsteared through the DPI from
SystemC to SystemVerilog (or opposite) make provision mheelement to be 32-bit aligned. For
example, if a structure containschar data type (8 bits), 24 bits should be padded to it to make it
32-bit aligned.

2The functions which provide the actual implementation ef tipcalls.
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Golden Model Synchronization

When the ISS starts the execution it fetches the first ingtmuehrough an upcall functiorupr)
from the reset address (0x0000_0100). It executes theiatstn in zero time and comes up again
to fetch the next instruction. As the ISS is running forevea iISystemcC thread, it will never give the
control to any other process if there is no mechanism to hlodke implemented a SystemC FIFO
based mechanism with blocking READ/WRITE to synchronizedizsstem. Four FIFOs of a single
element depth were implemented between the hooked-up médormions and thémported DPI
functions. With this strategy, when the ISS upcalls to fetch a new ircsion it writes the PC address
to the pc-fifo and is blocked until the instruction is avaiéam the read-fifo. If this instruction is
a Store, the ISS makes an upcall to write data up and it is btbelntil the write-fifo is empty.
However, if this instruction is a Load, the ISS upcalls todrelata and it is blocked until data is
present in the read-fifo After completing the execution of an instruction the 1SSalls to write
its status up and it is blocked until the status-fifo is empthen the ISS is blocked the control is
transferred to other running processes. On the other enttesé FIFOs the test bench uses the
imported DPI functions to feed the instructions and data to the ISS to read data ahéssks (for
the Store instructions) and to get the status of the ISS #hiteexecution of every instruction.

Golden Model Architecture

Figure [.4] shows the architecture of tlgolden model The ISS accesses the wrapper functions
through its upcalls. The communication between the ISS bhaddst bench is synchronized by
means of SystemC FIFOs. Test bench implemented in Systéoty/6OVM) accesses these FIFOs
through the@mported DPI functions.

Golden Model this
(SystemC Wrapper) empty_eIfJ'config_file
staticReadUpcall jupr-
sv_readUp read_up_addr_fifo
read_up handle- | readUpcall I X -
fifo endian staticWriteUpcall juPW
sv_writeUp write_up_addr_fifo writeUpcall I
staticWriteUpCPU j coustatus
H handle- write_up_data_fifo Status upcpu
ndian i fif i P
sv_writeStatus |‘—|—| write_up_status_fifo |1—| writeUpCPUStatus I
Up

Figure 4.4 Golden model for the verification of the OR1200 core.

How to Compile SystemC Wrapper under Questasim 6.5

To compile the SystemC module we need to include directovigsh contain (i) header files of
the Orlksim library, (ii) the SystemC library and (iii) th&W 2.0 library (if used) R3,27]. The op-
tion “-DMTI_BIND_SC_MEMBER_FUNCTION” is necessary when compiling a SystemC source file

3The read-fifo is used to fetch new instructions plus to redd fta the Load instructions.
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which usesSC_DPI_REGISTER_CPP_MEMBER_FUNCTION” to register its member functions as
DPI functions (Sectiod.4.3. The option“-DSC_INCLUDE_DYNAMIC_PROCESSES" is essential

if the TLM 2.0 is used in the model. An example piece of codectmmpiling a SystemC module
(orlk_sc_module_dpi) under Questasim is given below. Tteewriessysc_modelandinclude
contain SystemC library and header files of the Orlksim fibraspectively.

sccom—vv —|../../sc_golden_model_or1200/sysc_models/
—I../../sc_golden_model_or1200/orlksim0.3.0/install/include
—DSC_INCLUDE_DYNAMIC_PROCESSES-g —DMTI_BIND_SC_MEMBER_FUNCTION
../..lsc_golden_model_or1200/sysc_modebslk sc_module_ dpicpp

The SystemC library must be included in the final linking. Tin&er needs to be directed to
find the shared objects needed to compile the Orlksim lilmanysing these linker’s options:
(-WI, --R, $OR1KSIM_HOME), as shown below.

sccom—vv —L../../sc_golden_model_or1200/orlksi#m0.3.0/install/lib —WI,—R,
../..lsc_golden_model_or1200/orlksinD.3.0/install/lib —Isim —link

4.4.4 SystemVerilog Wrapper around OR1200 Core

A SystemVerilog based wrapper was implemented around tHE20®Rcore (DUV) which includes
three SystemVerilog interfaces named as: (i)ittsm-if, (ii) the data-if and (iii) thestatus-if These
are used to access the instruction Wishbone interface, Wathbone interface and the internal
signals of the core respectively. The status-if of this yeexpmakes all required internal signals of
the OR1200 available at its ports. The internal signalainhelthe status registers (to be monitored)
and the control signals (to control the monitoring). Theustaegisters include (i) some important
SPREs, (ii) all GPRs and (iii) the program counter (PC). Thiapper also implements a translation
block to translate the OR1200’s internal signals to a usalnie e.g., the GPRs are implemented as a
dual-port synchronous memory and their translation taytlivo 32-bit registers is needed. Further,
this wrapper also implements a control block to manipulageinternal control signals according to
the requirements e.g., delay a control signal for two cloates. All components of the verification
environment interact with the DUV only through the wrappénterfaces. The architecture of this
wrapper is shown in Figurel[5].

4.5 \Verification Environment for OR1200 Core
4.5.1 Description

We used the OVM to implement a reconfigurable and reusabi&cation environment for the
simulation based verificatioof the OR1200 core. We did eonstrained random generatioof
the verification scenarios. We implemented a vibrant cgeemaodel and a scoreboard to assess
the verification completeness. Figureq] elaborates the architecture of a verification environment
(or1200_tb_top) which was developed by applying OVM and used for the functional verifica-
tion of the OR1200 core. This verification environment inlds
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OR1200_wrapper

OpenRISC1200
(DUV)

|
—wb_signals—)

wb_insn_if

——wb_signals—)

I data_if | Istatus_ifl I insn_if |

wb_data_if

Figure 4.5 SystemVerlog wrapper around the OR1200 core.

the golden model,

the DUV wrapper ¢r 1200 _wr apper),

the main test bench component {200 _t b),

the global packages{¢_sc_package) and

the test library ¢r 1200_tb_test _exanpl e_i nst).

The golden model and the DUV wrapper have been describeceiprwvious sections. The
rest of the components will be described in this section. Mlaé test bench (main TB) is a re-
configurable and reusable component which was developeallbwing OVM. It interacts with the
golden model through itgnported DPI functions and uses its physical interfaces to interact with the
DUV wrapper. The main TB executes the configurable testsefetdt library where all tests are
constrained random generation of the scenarios which anpiised of OR1200 instructions. The
main TB first sends an instruction to the golden model, wiiéesls data (if the instruction is Load
or a Store) and receives the ISS status once the instrucii®iden executed. Further, it sends this
instruction to the DUV. While this instruction passes ttgbulifferent pipeline stages in the DUV
the main TB keeps eye on the state of the DUV and reacts aogbydilt examines the control
state machine of the DUV along with the data-path. The mainmiditors the control signals of
the DUV to determine the right time to examine the status ef@ivV (e.g., PC, SPRs, etc.) and
the execution results (GPRs). It compares the status ofdlueig model with the DUV status and
scoreboards it. The main TB also implements a coverage no@dalsess the completeness of the
verification. Most of the components of the verification eomiment can be configured according
to implementation’s requirements. For example, (i) theecage model or the scoreboard should be
implemented or not, (ii) an agent component will operate passive component, and (iii) which
tests of the test library will be executed.

All components of this verification environment are desedlilin the following subsections.
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Figure 4.6 Verification environment for the OR1200 core.
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4.5.2 Main Test Bench for OR1200 Core

Figure {.7] shows the structural design of the main TB used for the fonet verification of the
OR1200 core. It is comprised of three main components:

« the interface verification componeintv¢_or 1200),
« the system/module verification componesid_or 1200) and

« the virtual sequencen( 1200 _virtual _sequencer).

All components inside the main TB interact with each otheotlgh standard TLM interfaces.
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Figure 4.7 Main Test bench for the verification of the OR1200 core.

Interface Verification Component (IVC)

The main TB interacts with the DUV (OR1200) through its ifdee verification component. This
IVC includes (i) three physical interfaces (instructiotgtss, data), (ii) an instruction agent, (iii)
a data agent and (iv) a bus monitor. The instruction, stamgsdata interfaces of the IVC are
respectively connected to the instruction, status andidtgegaces of the DUV wrapper. The other
side of the instruction, status and data interface is rdisgeécconnected to the instruction agent, the
bus monitor and the data agent of the IVC. The instructioerfate is used to send the instructions
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to the DUV. The status interface is used to read the intetialls registers and the control signals
of the DUV. The data interface is used to send or receive dat@ad or Store accesses from the
DUV. Figure (4.8 shows a detailed view of this IVC.
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Figure 4.8Interface verification component.

Physi cal Interfaces

These interfaces provide the port-level connection to th&/[nterfaces and the helper func-
tions for the IVC to read or write the values on these portsesehinterfaces implement the Wish-
bone protocol checking usingpncurrent assertions.g., theack and theerr signals must not be
asserted together. Thesencurrent assertionare checked throughout the simulation to ensure that
the interconnection protocol is always obeyed.

I nstruction Agent

This instruction agent contains (i) an instruction driv@, an instruction monitor and (iii)
an instruction sequencer. It operates as a Slave comporteci v& connected to the instruction
Wishbone interface of the OR1200. On receiving a requesh fitee core, its instruction driver
requests a new transaction (instruction) from the inswwacsequencer and sends it to the DUV
over the instruction interfaca {c_or 1200 _i nsn_phy_if) by using its helper functions. These
transactions are required to be translated to the port $égeéls. The instruction driver follows the
Wishbone interconnection standard. It synchronouslyrestige termination signal (i.e., ack, err,
rty) for one clock cycle after each request from the DUV. Timgtriuction monitor only reads (does
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not drive) the signals of the instruction interface whenitts¢ruction driver acknowledges a request.
After reading the interface signals by using helper fumgjdhis instruction monitor translates them
to an instruction transaction and sends this transactidinetsystem verification componeiatver a
TLM port (i nsn_col | ect ed_port). An instruction transaction encloses the instructiort thaent

to the DUV and the address of this instruction. The instarctriver requests a new instruction from
the instruction sequencer. It sends the next transacti@tryiction) in the sequence to the driver.
These sequences are a constrained random generation ofS3RBistructions. The instruction
sequencer contains a library which encloses several segsiehinstructions those can be generated
on demand.

Dat a Agent

The data agent contains (i) a data driver, (ii) a data mouibar (iii) a data sequencer. It oper-
ates as a Slave component which is connected to the data Mdislititerface of the OR1200. On re-
ceiving a READ request from the DUV, its data driver requestew transaction (a data item) from
the data sequencer and sends it to the DUV over the dataaiogeffic_or 1200 _data_phy _if) by
using its helper functions. These transactions are redjtirée translated to the port level signals.
The data driver follows the Wishbone standard. It assegsyinchronous termination signal (ack,
err, rty) for READ requests while asserting asynchronousiteation signal for WRITE requests.
These termination signals are asserted for one clock cii¢cle.data monitor only reads (does not
drive) the signals of the data interface when the data deek&nowledges a request. After reading
the interface signals, it translates them to a data traiosaahd sends this transaction to the system
verification component over a TLM porddt a_col | ect ed_port). This data transaction encloses
the address and the data item along with the write enableaed the byte select (sel_i) Wishbone
signals. On the data driver’s request, the data sequentgs senew transaction (a data item) to the
driver. The data sequencer contains a library which ensleeeeral data sequences.

Bus Mbni t or

The bus monitor is used to access the internal control sSgmad the status registers of the
DUV through the status interface of the IVC. It can also asdi#® instruction and data inter-
faces. This bus monitor reads the OR1200 status signaly eyele, translates them to a sta-
tus transaction and sends the transaction to the systefficagon component over a TLM port
(status_col | ected_port). This status transaction is comprised of (i) the PC regi§i¢the SR,
(iii) the ESR, (iii) the EPCR, (iv) the EEAR, (v) all GPRs and)(some important control signals
of the OR1200 e.qg., pc_we, esr_we, except_start, etc.

System Verification Component (SVC)

The focus of the system verification component is to test tlitte-end behavior of the OR1200
core. This SVC is one step higher at abstraction level thaitME. It is comprised of the following
components:

 the module monitornyc_noni t or),
« the scoreboardwc_scor eboar d) and

« the coverage modeinf{c_cover age_nodel ).

These components are explained below.



4.5 Verification Environment for OR1200 Core 81

Modul e Monit or

This module monitor, shown in Figuré.f], collects the transactions (instruction/data/sta-
tus) sent from the IVC. It interacts with the golden model @ad its status and data along with
the store address (in case of Stores). It accesses the guoloel by accessing the DPI functions
(sv_writeStatusUp, sv_witeUp)through the local SystemVerilog taslsy(readst at usUp_t,
sv_readUp_t) respectively. The golden model executes every instradtiozero time while the
OR1200 is a 5-stage pipeline processor. Therefore, a synidation mechanism must be imple-
mented to correctly compare their status and results. Tleishamism was implemented in the
module monitor using SystemVerilog FIFOs where the depthagh FIFO is four elements. The
module monitor receives information from the golden modwl atores it into the corresponding
FIFO (e.g., SR to SR-fifo, PC to PC-fifo). The malin test benapkeon sending the instructions to
the ISS first and then to the DUV. The module monitor keeps tindilts FIFOs by receiving the
status and results from the ISS. These FIFOs are full by the the first instruction executes on
the DUV (in the execution pipeline stage). The module maridkes the status information of the
ISS from the top of the FIFOs, parses out the status of the Ddivi the transactions (status/data)
received from the IVC and sends both information to the dmmmed. The control blockc(r!)
implements an interactive control logic to monitor the cohstate machine of the DUV and react
accordingly to decide the right time of comparison betwdenI§S and the DUV statistics. This
control block also sends a few control signals (e.g., exctaitt) to thevirtual sequencewhich are
needed for the reactive scenario generation.
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Figure 4.9 Module monitor.
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To collect the verification coverage the module monitor sethé instructions those are exe-
cuted on the golden model and on the OR1200 core to an imptechenverage model. Addition-
ally, it sends a few status flags of the OR1200 core which aengisl for a satisfactory coverage
collection. These flags include (i) trearry flag (ii) the overflow flagand (iii) the conditional
branch flag

Scor eboar d

The scoreboard receives the status registers and data aitinghe address (for Stores)
from the module monitor through standard TLM ports. It rgesithe status of the golden model
(expected_* port) and the status of the DUVat ual _* port). It implements an individual
comparator for each stakeholder in the status and dataattimss e.g., PC, SR, address to store
data, etc. After comparison the scoreboarding is execotgdrierate the final report for each stake-
holder.

Cover age Model

To assess the verification closure, a coverage model wagingpited to determine that the
DUV has been exposed to a satisfactory variety of stimulis.cvéated a database“6f/stemVerilog
coverage points” to generate a histogram of instructions those have beenitedtaon the ISS and on
the DUV. This coverage model creates a database on the Habesfollowing key features.

* The total number of instructions being executed on the ISS.
< The total number of instructions being executed on the DUV.
« The type of instructions being executed on the ISS.
e The type of instructions being executed on the DUV.

 Verify that every instruction reads or writes to all its #gperand e.g., (i) ADD uses all 32
GPRs as sourcel, source2 and destination. (i) A Jump cisirutakes all legal immediate
values.

« Verify that each instruction which can modify the statug$ldcarry, overflow, and branch
flag) properly sets and clears the corresponding flags. Fonpbe, ADD correctly sets and
resets the carry and overflow flags.

e The coverage of 32-bit address space through the OR12@lsgm counter (PC) register.

» Thecross coverage of three consecutive instructions in the OR1200 pipelineliserve the
dependencies between the instructions.

Virtual Sequencer

The verification environment contains a virtual sequenaeaynchronize the timing and data be-
tween (i) the golden model (ISS), (ii) the instruction ifidéee and (iii) the data interface. The
instruction sequencer generates sequences of instracilétre data sequencer generates sequences
of data. There is no co-ordination between these sequengéiis co-ordination is necessary to
control the sequence generation on the instruction andinlzidaces. Moreover, we need to send
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the instruction and data transactions to the golden modldird then to the OR1200 core (DUV).
Therefore, a controlling body must be implemented at a hid¢deel to allow the fine control of
the verification environment for a particular test. Theuattsequencer contains the instances of
the instruction sequencer and the data sequencer alon@wittual sequence library. This library
encloses the virtual sequences which are executed on tivalviiequencer and control the coor-
dination between the instruction sequencer, the data sequand the golden model. The virtual
sequences are a constrained random generation of theissgaesequence of instruction types e.g.,
ADD, MUL, etc.). When the OR1200 sends an instruction fetuest the virtual sequencer picks
the next instruction in the sequence (e.g., ADD) and geesgriéé constrained random transaction
(binary code of ADD instruction e.g., 0xe0841800). The s$emntion is generated on the instruc-
tion sequencer by using the local sequence library of theuictson sequencer. Before sending this
transaction to the instruction driver the virtual sequerist sends it to the golden model. If this
instruction is a Load, the virtual sequencer also provideandomized data to the golden model.
The golden model finishes execution and sends the statuseanld back to the module monitor.
After this the virtual sequencer allows the instructionusateer to send this instruction’s transaction
to the instruction driver. If the instruction is a Load, thewal sequencer uses the same data sent
to the golden model and generates a constrained data tt@msac the data sequencer by using its
local sequence library (data sequence library). When tissuction is executed on the DUV and
sends a READ request, this data transaction is sent to tiaeddaer. The virtual sequencer also
implements a complex mechanism to offer interactive bedmdw using control signals of the DUV
received from the module monitor. One instance of this meisha is to stop sending instructions
to the golden model (sending instructions to the DUV nevapsitif an exception has been signaled
in the OR1200 pipeline. It is because the OR1200 instrugpigeline is flushed and following
instructions will never be executed. Whereas, the goldedein@SS) executes instructions at once
in zero simulation time as we feed it instruction before segdo the OR1200 core (DUV).



Chapter

Results

5.1 Introduction

This chapter summarizes the results obtained from the atioal of the CPU Subsystem. It
presents the functional verification results of the memgsgesm and the Sub-bus system. Further,
this chapter presents the verification results of the ORI208 obtained by applying the verifica-
tion environment developed for the functional verificatiminthe OR1200 core (see Sectidry).
These results can be divided into three categories, as blew.

1. Errors: All errors found in the OR1200 core.

2. Discrepancies: All found discrepancies between the OR1200 core and itsuicibn set
simulator (used as a golden model).

3. Coverage results: The verification coverage results achieved from the funetioerification
of the OR1200 core.

5.2 CPU Subsystem Simulations Results

5.2.1 Overview

After interconnecting all components of the Subsystem,wneartest program on it to see its basic
functional correctness. For this purpose, the memoraiigtition file (IHex) of the test program is
first generated using the OR1200 Tool chain and then loadedhia ROM of the CPU Subsystem.
The Subsystem is required to execute this binary encodeddilectly. The test program is also
executed on the OR1200 ISS to get execution results (giviemhéor cross-testing.

‘ Test program’s execution result on the IS8x0037_5F00 ‘

The used test program is given in Appendix 1.1). Additionally, a copy of its disassembly
file is given in Appendix £.1.2). Some important execution results of the application @ogare
presented in the following subsection.

84
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5.2.2 Execution Results

The following are the most important aspects while exegudinm application program on the Sub-
system.

1. The Subsystem should fetch correct instructions fromecbaddresses inside the ROM.

2. The Subsystem should calculate the correct executiat gg®d store it back to the memory.

Correct Instruction Fetch

After receiving the reset signal, the CPU Subsystem shaetichfthe first instruction correctly
from its reset address (0x0000_0100) inside the ROM. Figtrg shows a waveform of the
OR1200 instruction interface (Wishbone) that fetchegimsions from the ROM and feeds them to
the CPU. In this waveform the reset signal is de-assertathati00 ns. The OR1200 sends its first
READ request by asserting theb_cyc_o andiwb_stb_o signals at time 115 ns from the address
0x0000_0100. It gets the instruction 0x1820_FO000 backirfa 1L.25 ns) that is stored inside the
ROM at the address 0x0000_0100 (see Sedidd). This instruction (. novhi = 0x1820_F000)
is the first instruction in the disassembly of the test prog(aee AppendipA.1.2). The OR1200
core then keeps on fetching and executing new instructiorrectly.

OR1200_insn_if(WB)
bk [ L L[ L] L L L L L L LTI L
fwb_rst i~ ]
fiwb_ack_i ] ] ]
fiwb_err_i
fiwb_rty_i
/iwb_dat_i 00000000  }——{I820f000 J|J00000000 |} [a8210450]J00000000}—(1860f000 | J00000000}———
fwb_cyco [ [
fwbstbo [ [
/iwb_adr_o 00000000  J00000100 [00000104 [00000108 Jo0...
liwb_we_o
/iwb_sel_o 0 If
/iwb_dat_o 00000000
g e g ] g g g g g g g g
125ns

Figure 5.1 CPU Subsystem'’s correct instruction fetch.

Correct Execution Result

Figure b.2 shows the waveform of the instruction and data interfadehe® OR1200 core. At
time 17765 ns a “load word zero” instructioh. { wz = 0x8482_FFF4) is fed into the processor.
At time 17795 ns a “store word” instructioh.(sw = OxD7E2_27FC) is fed into the processor. At
time 17815 ns the instructidn | wz loads the calculated result (0x0037_5F00) of the test pragr
from the stack (over the data interface). At time 17845 ndrik&uctionl . sw stores the result to
the memory (over the data interface). The stored res@x@37_5F00which is the correct result
calculated from the ISS.
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The waveform also confirms our use of synchronous termindgick, err, rty) for READ trans-
fers and asynchronous termination for WRITE transfers.s Ththe solution to get the maximum
throughput when using the Wishbone standard (see Seztiod.

OR1200_insn_if(WB)
fwb_ek i1 [ L L L L L

fiwb_rst_i

fiwb_ack_i [ ] [ ] [

fiwb_err_j

fiwb_rty_i
fiwb_dat_i -{8482fff4 [J0000... | {d7e227fc[J0000... |}—{07ffff95 |J0000...
liwb_cyc_o i

fiwb_stb_o i

fiwb_adr_o 000003a8 J000003ac J000003b0 ]000003b4

h

|

/iwb_we_o

fiwb_sel_o T

/iwb_dat_o 00000000
OR1200_data_if(WB)
VG i I e T e I s O e Y e I s Y e O s O

Jdwb_rst_i

/dwb_ack_i N
/dwb_err_i
/dwb_rty_i
/dwb_dat_i 00000000 [00375f00 100000000
/dwb_cyc_o I M
/dwb_stb_o i N
/dwb_adr_o f00003b4 [f0000444 [f000044:
/dwb_we_o N
/dwb_sel_o 0 )i o i
/dwb_dat_o 00040004 [00375f00 [Oof4tit4 [00375f00
REEy RN RN RN RN RN SN R RRR RN AR RRE PR RN NN R RN ARNNR FYRRA SN RRRRR RRRRRSNRRN) SRRRY NAR!
17760 ns 17780 ns 17800 ns 17820 ns 17840 ns
10 ns 17815 ns}———30ns
30 ns——{17795 is}— 10 ns
17765 ns
17805 ns

17845 n:

Figure 5.2 CPU Subsystem’s execution result.

5.2.3 Maximum Throughput Results

As discussed in Sectiof (7), the maximum achievable throughput of the CPU Subsystéimés
clock cycles per instruction. Figuré&.[J] shows a waveform of the instruction interface of the
OR1200 core. It confirms that most of the instructions areriealthe core after every three clock
cycles (i.e., 30 ns). However, the LOAD/STORE instructiaeed more time to execute on the CPU
Subsystem. The LOAD instructions take five clock cycles, (b8 ns) because of the synchronous
termination and STORE instructions take four clock cycles,(40 ns) because of the asynchronous
termination.
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OR1200_insn_if(WB)
fiwb_ctk_i [N
fiwb_rst i [ ]

fiwb_ack_i o
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Figure 5.3CPU Subsystem’s maximum throughput results.

5.3 Memory System Verification Results

5.3.1 Overview

The memory system of the CPU Subsystem includes a ROM and a Réidory with Wishbone
interfaces (see Sectigh?). The ROM is implemented by using a RAM inside and both meesori
use the same Wishbone interface. Hence, only the verifitafithe RAM is adequate. However, we
separately verified the ROM initialization with an Intel Hiée (see Sectio2.4.3. The simulation
results of the RAM verification are presented in this section

5.3.2 RAM Verification Results

We discussed the verification plan and the test bench usetiddiunctional verification of the
RAM in Section @.2). Figure p.4] presents the successful completion of all tests desigoethé
verification of the RAM component.

Sequential Single WRITE/READ Access Test Result

This test was designed to sequentially cover the completeead space of the RAM. It first writes
a data value to an address, then reads from the same adddeBeadly compares both data val-
ues (see Section.2.]). Figure p.5 shows that the test bench asserts a WRITE request (at time
26290 ns) to the RAM with a randomly generated data (Ox7BBOFY and a sequential address
(Ox0000_020D). As all WRITE accesses get an asynchronomsn&tion, this transfer finishes in
the same clock cycle. Then the test bench asserts a READste@idime 26310 ns) to the RAM
from the same address used in the previous WRITE transf@0(ix 020D). As all READ ac-
cesses get a synchronous termination, data is availablettest bench one clock cycle later (at
time 26320 ns). Then the test bench compares both data @uiéen and read). As this test is
passed, the next WRITE request is sent to the RAM (at time @6%&4 with the next sequential
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Top lewel modules:

RaMTesthed
viim RaMTesthed
Loading sv_std. std
Loading work. Wishbone (fast)
Loading work. EaMTestbed(fast)
Loading work, WishboneIf (fast)
Loading work. RAMTest(fast)
Loading std. standacd
Loading ieee. std logic 1164 (hody)
Loading ieee. momeric_std(hody)
Loading work. global pack
Loading std. textio(hody)
Loading work. mem_pack (body)
Loading work, ram{rtl)#1

Yl G- run -3

Testing sequential Single Write/Read Access

Testing sequential Single Write/Read Access: Passed
Testing random Single Write/Read Access

Testing random Single Write/Read Access: Passed
Testing Idle Cycle

Testing Idle Cycle: Passed

Testing random BElock Write/Read Access

Testing random Elock Write/Read Access: Passed
Simulation stop requested.
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YEIM 7=

Figure 5.4 Tests’ execution of the functional verification of RAM.

address (0x0000_020E) and a new random data value. Theotessdhe complete address space
of the RAM.

IRAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i ——{7B30911F } (DFDOAOBD)}
/RAMTestbed/u_ram/ram_we_j ——— +—~—ouy T =
/RAMTestbed/u_ram/ram_sel i —F }—+—{F "} —F ——F —
/RAMTestbed/u_ram/ram_adr_i {0000020D } ooo0020D )
/IRAMTestbed/u_ram/ram_cyc i [ | [ 1 ] 1
/IRAMTestbed/u_ram/ram_sto_i [ | [ 1 ] 1
/RAMTestbed/u_ram/ram_dat_o {SE25C304 |7B30911F } 5E25C304
/RAMTestbed/u_ram/ram_ack o [ | ] I e e

IRAMTestbed/u_ram/ram_err_o

I/RAMTestbed/u_ram/ram_rty_o
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26280 ns 26300 ns 26320 ns 26340 ns 26360 ns

Figure 5.5 Sequential single WRITE/READ access result.

Random Single WRITE/READ Access Test Result

This test was designed to randomly cover the address spatbe G#AM. It first writes a data
value to a random address, then reads from the same addce§isally compares both data val-
ues (see Section.2.1). Figure p.6] shows that the test bench asserts a WRITE request (at time
877490 ns) to the RAM with a random generated address (0x48BZ6) and a random data
value (Ox081B_E479). As all WRITE accesses get an asynohsotermination, this transfer fin-
ishes in the same clock cycle. Then the test bench assertsABD REgjuest (at time 877510 ns)
to the RAM from the same address used in the previous WRITisfea (0x44DC_BB76). As all
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READ accesses get a synchronous termination, data is lalatlathe test bench one clock cycle
later (at time 877520 ns). The test bench compares both datas/(written and read). As this test
is passed, the next WRITE request is sent to the RAM (at tini®&J ns) with new random address
(OXESAA_CE1C). This test was repeatetf imes to get an exhaustive verification completeness.

IRAMTestbed/u_ram/clk_i

/RAMTestbed/u_ram/ram_dat_i ——{081BE479 } (6DDED2FA}

/RAMTestbed/u_ram/ram_we_j —— +—~—ou T =
/RAMTestbed/u_ram/ram sel i —F }——+—{F "} —F —F —
/RAMTestbed/u_ram/ram_adr_i EBAACET EBAACEL
/IRAMTestbed/u_ram/ram cyc i [ | [ 1 ] 1
/IRAMTestbed/u_ram/ram_sto_i [ | [ 1 ] 1
/RAMTestbed/u_ram/ram_dat_o {SE25C304 08IBE479 } 5E25C304
/RAMTestbed/u_ram/ram_ack o [ | ] I e e

IRAMTestbed/u_ram/ram_err_o

I/RAMTestbed/u_ram/ram_rty_o

N NN RN NERN
877480

| ! ! \
ns B77500'ns B77520'ns B77540'ns B77560'ns

Figure 5.6 Random single WRITE/READ access result.

Random Block WRITE/READ Access Test Result

In this test, the test bench sends a block WRITE request t&#&kd with randomly generated
arrays of addresses and data. Then the test bench sendk&RE&® request for the same ad-
dresses. The received data array is then compared with itterwdata array (see Sectidn2.]).

If the test passes, the next block WRITE request is sent t®#&M with new randomly generated
arrays of addresses and data. Figuré][shows a block WRITE request. FigurB.§] shows a
block READ request corresponding to the previous block WRirBnsfer. The length of the blocks
is randomly generated. It is important to note that by usimgapproach (all WRITE accesses get
an asynchronous termination and all READ accesses get amsyrus termination) a WRITE ac-
cess of eight blocks length takes exactly eight clock cydmish. It was taking nine clock cycles
by using the‘advanced synchronous cycle termination” approach 4]. However, a READ access of
eight blocks length still takes 16 clock cycles because efsynchronous termination limitations.
For an exhaustive verification coverage this test was rede times with random block lengths.

IRAMTestbed/u_ram/clk_i
/RAMTestbed/u_ram/ram_dat_i ——{EFEFDOF4 JOF3B5C41 |901D7CBE |2FF22442 [9E7A93C6 [D28DEDCS [EB9123E4 [33FFBDEE |—————

/RAMTestbed/u_ram/ram_we_i ——— |
/RAMTestbed/u_ram/ram_sel_i ———(F —
IRAMTestbed/u_ram/ram_adr_i 15D20B 15D20B 15D20BD0 J15D20BD4 [15D20BD8 J15D20BDC [15D20BEO [15D20BE4
IRAMTestbed/u_ram/ram_cyc_i
IRAMTestbed/u_ram/ram_stb_i
IRAMTestbed/u_ram/ram_dat_o
IRAMTestbed/u_ram/ram_ack_o

IRAMTestbed/u_ram/ram_err_o

IRAMTestbed/u_ram/ram_rty_o

v berrec s L rrcrccbecrcec s Lo rc e berce o cc Decrr o e s s bcc oo borinninn
922380 ns 922400 ns 922420 ns 922440 ns

Figure 5.7 Random block WRITE access result.
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IRAMTestbed/u_ram/clk_i
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IRAMTestbed/u_ram/ram_cyc_i
IRAMTestbed/u_ram/ram_stb_i

/RAMTestbed/u_ram/ram_dat_o —{5E25C304 |EFEFDOF4 J9F3B5C41 [901D7CBE |2FF22442 )|

/RAMTestbed/u_ram/ram_ack o [ ] J L LT

IRAMTestbed/u_ram/ram_err_o

IRAMTestbed/u_ram/ram_rty_o

o bcc e b s bcc e b e L s beecrccs e Liccccnc becco g bevcrinon b
922460 ns 922480 ns 922500 ns 922520 ns 922540 ns

Figure 5.8 Random block READ access result.

5.4 Sub-Bus System Verification Results

5.4.1 Overview

We did a constrained random verification of the Sub-bus systedetailed verification plan and
the test bench used for the functional verification of thelerlayer Sub-bus system is discussed in
Section ¢.3). In this section we present the results and the achievétication coverage of the
Sub-bus system.

5.4.2 Tests Stimuli Execution

As we have discussed in Sectiohf), the Sub-bus system has three Master interfaces and four
Slave interfaces. The Sub-bus system applies a prioritgchasgbitration where each Master in-
terface has a fixed priority. The “Main-bus Master interfdadous_if)” has the highest priority
and the “instruction interface (insn_if)” has the lowesbpty. We have connected three BFMs to
three Master interfaces for the functional verification loé Sub-bus system. The BFMs emulate
the behavior of Master components having Wishbone interfaigure §.3] shows the used test
bench. Master-1 is the BFM-1 which is connected to the iosivn interface (insn_if) of the Sub-
bus system. Master-2 is the BFM-2 connected to the datdacte(data_if) of the Sub-bus system.
Master-3 is the BFM-3 connected to the Main-bus Master fater (mbus_if) of the Sub-bus sys-
tem. Hence, Master-3 is the highest priority Master compowndile Master-1 is the lowest priority
Master component. Four RAM components are connected toStawe interfaces of the Sub-bus
system.

Figure p.9 shows that each Master component executes the test stiesitined for the verifi-
cation of the RAM component (see Sectibi). Since itis a priority based Bus system, a higher pri-
ority Master finishes its tests before lower priority Mastdvlaster-3 blocks Master-2 and Master-1.
Master-2 blocks Masterl. Master-1 finishes last. A high@rity Master blocks the lower priority
Master if they access the same Slave component.

5.4.3 Sub-Bus Verification Coverage Results

Figure p.1Q presents the address coverage of all Master componerigwiach Slave compo-
nent and the address coverage of each Slave componentextbgssach Master component. This
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Tran=script

# Loading work,arbhiterirtl}
VSIH 2% run —a

# Master @ 1 Testing =equential Single HWrite/Read Access
Mazter : 2 Testing szequential Single MWritesRFead Acceszs
Mazter ¢ 2 Testing sequential Single HWritesRead Access
Mazter : 2 Testing zequential Single Write/Fead Acceszz: Passed
Mazter ¢ 2 Testing random Single Write/Read Access
Mazter @ 2 Testing =zequential Single Writes/Read Access: Pazzed
Mazter @ 2 Testing random Single Write/Read Access
Mazter @ 1 Testing sequential Single MWritersRead Acceszz: Passed
Maszter @ 1 Testing random Single Write/Read Access
Mazter @ 3 Testing random Single WritesRead Access: Passed

Testing Idle Cycle

Testing Idle Cycle: Pas=ed

Maszter @ 3 Testing rancom Block HWritesRead Access

Mazter ¢ 3 Te=sting random Block MHritesRead Acces=z: Pas=sed
Maszter @ 2 Testing random Single WritesRFead Access: Passed
Testing Idle Cycle

Testing Idle Cycle: Passed

Mazter @ 2 Te=ting random Block Hrite/Read Access

Master @ 2 Testing random Block MritesFead Access: Passed
Mazter ¢ 1 Testing random Single Hrite/Read Accessz: Passed
Testing Idle Cycle

Testing Idle Cycle: Passed

Maszter : 1 Testing random Block MWrite/Fead Rccess

Mazter ¢ 1 Testing random Block Hrite/Fead Access: Passed

EE T A G B R R R R

Simulation stop reguested,

Figure 5.9 Tests’ execution of the functional verification of Sub-bystem.

coverage model was implemented to clearly see the verditatmpleteness of the Sub-bus system
by means of addresses accesses (see SécHpn

Example The address coverage of the instruction Master depictsittingts accessed the ROM
component 51570 times, the RAM component 52374 times, théSSE&mponent 51630 times and
the SCPU component 51962 times. The address coverage ofabhe @mponents verifies the
access of the instruction Master.

We have achieved 100% functional verification coverage efShb-bus system by means of
addresses (each address was accessed).
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TlName |E0uerage |GDal # of Goal |Status |HE
=gl fth_crosshar

_—J-‘ TYPE instr_master_coverage 100, 0% 100 100, 0% D 1
=@ C¥P instr_master_coverage:iaddress 100, 0% 100 100, 0 (|
-B] bin instr_master_rom_cov 51570 1 5157000,0% DN
-[B] bin instr_master_ram_cov LEETd 1 5237400,0%
-[B] bin instr_master_shus_cow 51630 1 S1E3000,0%
-B] bin instr_master_scpu_cov Si19ez 1 5195200,0% DN
-(B] illegal _bin acch_X 0 - -
=+l TYPE data_master_coverage 100, 0% 100 100, 0% D 1
-8 CVP data_master_coverage:raddress 100, 0% 100 100, 0% (|
-[B] bin data_master_rom_cov D2aes 1 5286200,0%
-|B] bin data_master_ran_cow 51730 1 5173000,0% DN
-B] bin data_master_shus_cov 91104 1 9110400,0% [N
-|B] bin data_master_scpu_cov 51334 1 5153400,0% DN
-(B] illegal_bin adchr_X 0 - -
=4 TYPE mbus_master_coverage 100, 0% 100 100, 0 D 1
j‘ C¥P nbuz_master_coverage: jaddress 100 0% 100 100 03 (|
-[B] bin mbus_master_rom_cow 514594 1 5149400,0%
-{B] bin mbus_master_ran_cow [ T 1 52R0200,0% DN
-B] bin mbus_naster_shus_cov G002 1 S200200,0% [N
-[B] bin mbus_master_scpu_cov 51538 1 5153200,0%
-{B] illegal_bin adchr_X 0 - -
=+ TYPE rom_coverage 100 O 100 100, 0 D 1
;}‘ C¥P rom_coverage:iaddress 100 03 100 100, 03 (|
-[B] bin rom_instr_master_cow B1570 1 515700004
-|B] bin rom_data_master_cow 52863 1 5286800,0%
-|B] bin rom_mbus_master_cowv 514494 1 5145400,0% DN
-(B] illegal _bin acch_X 0 - -
=4 TYPE ram_coverage 100, 0% 100 100, 0% D 1
@ CVP ram_coverage: jaddress 100, 0 100 100, O (|
-[B] bin ram_instr_master_cov DEsErd 1 5237400,0%
-|B] bin ram_data_naster_cow B173E0 1 5173000,0% DN
-B] bin ram_mbus_master_cov 52502 1 S2E0200,0%
-(B] i1legal _bin addr_X 0 - -
=+l TYPE shus_coverage 100, 03 100 100, 03 1
= C¥P sbus_coverage:iaddress 100, 0% 100 100, 0 (|
-B] bin shus_instr_master_cov 51630 1 5162000,0% DN
-|B] bin sbus_data_master_cov 51104 1 5110400,0%
-[B] bin shus_mbus_master_cov 52002 1 S200200,0%
-B] illegal_bin addr_X 4] - -
=t TYPE =cpu_coverage 100, 0% 100 100, 0% [
;,‘ CYP zcpu_coversge!iaddress 100, 0% 100 100, 0% (|
-B] bin scpu_instr_master_cov 51962 1 S196200,0%
-[B] bin scpu_data_master_cov 51334 1 5183400,0%
-[B] bin scpu_mbus_master_cow 51538 1 5153500,0% DN
-|B] illegal_bin addr_X 4] - -

Figure 5.10Sub-bus verification coverage results.
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5.5 OpenRISC1200 Error Reports

5.5.1 Overview

This section presents all errors and faults we find in the @RXDre. A detailed report is given
for every fault.

5.5.2 Extend Half Word with Sign (l.exths) Instruction

The instructionl . ext hs belongs to the ORBIS32-II instruction class of the OpenRIGI ar-
chitecture. The following instructions belong to the famof thel . ext hs.

Extend Byte with Sign (l.extbs)

Extend Byte with Zero (l.extbz)

Extend Half Word with Sign (l.exths)

Extend Half Word with Zero (l.exthz)

The same inconsistency is found between the OR1200 cordan8$ for all these instructions.
These instructions are properly implemented and correatiking in the ISS but the OR1200 core
does not contain their implementations. This report isHieribstruction . ext hs only, though it is
applicable to other mentioned instructions.

Description

The execution result of the instructibnext hs is placed into GPR rD. In execution, bit 15 of GPR
rA is placed into the higher-order 16 bits of GPR rD. The lowlar 16 bits of rA are copied into
low-order 16 bits of rD. The bit encoding of the instructibrext hs is given below. More details
can be found in the OpenRISC1000 architectmanual[ 11].

l.exths
3a[.[.].].J26[25] . J.].J2aJ20]. . T.TaeJas].J.].].JaoJo].].]6[ 5] 4 [3].].]0
Opcode 0x38 D A Re=rved Opcode 0x0 | Reserved | OpcodeOxc
6 bits 5 bits 5 bits 6 bits 4 bits 2 bits 4 bits

ISS Implementation ofl . ext hs

The ISS implementation of the instructibnext hs works correctly. The ISS status and the results
after the execution of an instruction ext hs (0xe2fe_000c) on the ISS are given in Figubel[l].
The results show that bit 15 of register rA (GPR[30]) is cotigeplaced into the higher-order 16
bits of register rD (GPR[23]). The low-order 16 bits of ragisrA are also correctly copied into the
low-order 16 bits of register rD.


http://www.opencores.org/openrisc,architecture
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# insn_to_insn type 325 . IS5 status start

# Insn to ISS :: L_EXTHS = e2fel00c : rD[23] = 00004cal? : rcA[30] = 00004caZ

# GPR[0] == 00000000 : GPR[1] == 00000000 : GPR[Z] == 00000000 : GPR[3] == 00000000
# GBR[4] == 00000000 : GPR[S] == 00000000 : GPR[6] == 00000000 : GPR[7] == 00000000
# CGPR[8] == 00000000 : GPR[9] == 00000000 : GPR[10] == 00000000 : GPR[11] == 00000000
# GPR[1Z] == 00000000 : GPR[13] == 00000000 : GPR[14] == 00000000 : GPR[15] == 0000laSf
# GBR[1l&] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00000000 : GPR[19] == 00000000
# CGPR[20] == 00000000 : GPR[Z21] == 00000000 : GPR[2Z] == 00000000 : GPR[23] == 00004cal
# GBR[24] == 00000000 : GPR[25] == 00000000 : GPR[26] == 00000000 : GPR[2Y] == 00000000
# CGPR[28] == fEf££f921 . GPR[29] == 00000000 : GPR[30] == 00004ca2 : GPR[31] == 00000000
# SR == 00008201 : EPCR == 00000000 : EEAR == 00000000 : ESR == 000o0sa01
#F == 1 o O == [l o Ov == [l

# PC == 00000123

# 1insn_to insn type 325 : ISS status end

Figure 5.11Execution results df. ext hs on the ISS.

OR21200 Implementation ofl . ext hs

It is mentioned above that the instructibnext hs and its other family instructions are not im-
plemented in the OR1200 core. However, it would be intemgsto know what happens if this
instruction is executed on the OR1200 core. Perhaps thisiat®n would provide correct results
on the ISS. Some pieces of the OR1200 implementation, sttegefor the instruction . ext hs,
are given below.

Thel . ext hs is an ALU instruction. The signallu_op (in the code) contains the ALU opcode
which is the last four bits of an ALU instruction. Hence, iretimstruction decode (id_insn) stage,
an instruction . ext hs sets thealu_op = OxC (froml . ext hs bit encoding).

[ % ek ke ke kK ke 0r1200_ctr|_\/k**~k***** /
/! Decode of alu_op

always @(posedge clk or posedge rst) begin
if (rst)
alu_op <= #1 ‘OR1200_ALUOP_NOP;
else if (lex_freeze & id_freeze | flushpipe)
alu_op <= #1 ‘OR1200_ALUOP_NOP;
else if (lex_freeze) begin
case (id_insn[31:26]) I/l synopsys parallel_case
/I ALU instructions except the one with immediate
‘OR1200_OR32_ALU:
alu_op <= #1 id_insn[3:0];

Thel . exths is an ALU instruction but n®LU opcode is defined for this instruction in the
OR1200 implementation, as given below. However, an ALU decR1200_ALUOP_MOVHI)
for another instruction is defined with the same value (4'd1XC) as for the instructioh. ext hs
(from | . ext hs bit encoding).

[*x+xxxx  0rl200_defines .wxxxx /[
‘define OR1200_ALUOP_MOVHI 4'd12

As discussed above, the instructiorext hs sets thelu_op to 0xC, which is an opcode of the
instructionl . movhi . Therefore, the instruction. ext hs actually results in the execution of another
instruction i.e.] . novhi . The instruction . ext hs does not set thmacrc_op flag in the instruction
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decode (ID) stage. Hence, in the execution stage (EX) odeltanis shifted left by 16 bits in
the OR1200_ALUOP_MOVHI implementation (given below). Thieencoding of the instruction

| . movhi is different. If the instruction i$. movhi, the 16-bit immediate value is zero-extended,
shifted left by 16 bits and placed into a GPR rD.

[*%%xxx 0rl200_alu . wrrsxx [
‘OR1200_ALUOP_MOVHI : begin
if (macrc_op) begin
result = mult_mac_result;
end
else begin
result = b << 16;
end
end

Simulation Results ofl . ext hs

Figure b.13 shows the simulation waveform of the OR1200 core. It shdves the instruction
| . ext hs (Oxe2fe_000c) is in the execution stage (ex_insn) at tinte 8] wherealu_op = OxC,
macrc_op = 0x0, operand a = 0x0000_4ca2 and operand b = 0x0000_00@0exEtution result of
the instructior . movhi is 0x0000_0000, asmacrc_op = 0x0.
After the execution of the instructidn ext hs on the OR1200 core, the ISS status was compared
with the DUV results and a mismatch was found as shown in Eiguf.2.

# insn_to_ insn type 385 : DUT status start

# Insn to DUT . L_EXTH = e2fel00c : cD[E3] = 00000000 : c&[30] = 00004dcal

# GPRE[0] == 00000000 : GPE([1] == 00000000 : GPR[Z] == 00000000 : GPR[3] == 00000000
# GBR[4] == 00000000 : GPRE[S] == 00000000 : GPR[&] == 00000000 : GPR[T] == 00000000
# CGPRE[8] == 00000000 : GPE([Y9] == 00000000 : GPR[10] == 00000000 : GPR[11] == 000000CO
# GBR[1Z] == 00000000 : GPRE([13] == 00000000 : GPR[14] == 00000000 : GPR[15] == 00001aSf
# CPRE[1le] == 00000000 : GPE([17] == 00000000 : GPR[18] == 00000000 : GPR[19] == 00000000
# GBR[20] == 00000000 : GPRE([Z21] == 00000000 : GPR[ZZ] == 00000000 : GPR[23] == 00000000
# CPR[24] == 00000000 : GPE([25] == 00000000 : GPR[Z26] == 0O0OO00O0 : GPR[Z27] == 00000000
# GPR[2B] == fE£ff021 . GPR([Z29] == 00000000 : GPR[30] == 00004cal : GPR[31] == 00000000
# SR == 00008201 : EPCE == 00000000 : EEAR == 00000000 : ESE == 00008001
#F ==1 ¢ 0T == 0 C 0w == 0

# PC == 000001320

# insn_to_insn type 385 . DUT status end

#

+Fatal: MVC MONITOR:405 : compare_gpr FATLED: iss_gpr[23] = 00004ca2 . dut_gpr[23] = 00000000
Time: 405 ns  Scope: orlZ200_th_top mwc_monitor. compare _gpr

+Note: %finish co A fenvfeve_orlZ00 mve monditor. sw (862
Timeg: 405 ns Iteration: 2 Instance: Jorl200 th_top/merc_monitor::run

Figure 5.12Results mismatch df. ext hs from the OR1200 core and the ISS.

Conclusion

The instructionl . ext hs and its other family instructions are implemented and wagldorrectly
in the ISS. Whereas, these instructions are not implemeémtbeé OR1200 core. It is very important
to notice that the execution of these instructions in the 8R1core actually executes the instruc-
tion | . novhi, as discussed above. This is an implementation fault in tR&2D0 core because
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if an unimplemented instruction executes on the procegtssinpuld generate an illegal exception.
However, wheri . ext hs is executed the OR1200 executes the instrudtiarovhi instead of gen-
erating an exception. Hence, incorrect execution resuéiscalculated without knowing that an
unimplemented instruction has been executed on the pr@cess

In the presence of this error, we can not include the insomdt. ext hs and its other family
instructions in the main verification test of the OR1200 core

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
sign/zero extended instructions. This means that the demgoes not either implement these
instructions or often generate them. This is the reason Wisyerror stayed unidentified before.
However, the OR32 assembler could assemble code that wsssitistructions.



s A A B R I B R O
11 1 11 1 11 [ 1 11 [
9f.. |9flc5561 lahG1915Eh 19t a5f le37RO00C ledinghie le2fednic 19c57435ea laaadsil.
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“““ [ooooof1o lomooot 14 {00000 & lonooot1e [ooooa1zo lonooo 24 {00001z lonooo 24
L | [ L L | L L | L I
000001 30 EEEES K looooniic nooonizo | TR lnooonizs 000001 2 oo0onis0 0L
4 0000017 000000114 fomoooi 18 fnoooafic | I fnoooofz4 b0t 2 N ED ol
| 14, 97 H4610000%ab.. A46100.. 8d.. 1461000005, H46100.. fed. 467100005z, 1461000009, 461 0000a... 14,
| ofEEMzZ]  [9fdc5381 lalk191ah 19adfr a5f led7E00DC le400903e ledfe000c l9c5735ea a
e2fel00c | 24187695 |9fGEFIZ1 19581 labk197ab [9dff1 a5f led7RO000C le4009b3e le2fen0bc g
Y 24190933 e4167695 E e lafdc5 361 JET TR ERET T3 a5f led7EO00C led4009n3e e
L] LI L] LI L] L] L] L |
1 [ L | [ L | [ L | [ L |
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ze 1 L] LI L] LI L] L | L] L |
o B # 0r1200_ctrlfalu_op c d )i la )i I Il I il
~ & orl200_ctrimac_op i 0
a 0 Iz 1o | 0
B4 orl200_ctrlssel b 1 io 11
+ - orl200_alusresult 00000000{ 00000000 FFaz ohondcaz  NERET [0hanT a5t lnooaadoo ol
+ o or1200_alusa 00004 ca2| 00000000 | 21 lnoooogoo lnoon4daz 0L
+ - 0r1200_alush 00000000{ 00000000 YTz 00005361 | IERETS [Dmon a5t lnoooogoon 0L
| | L L o o T T |
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Figure 5.13Simulation results off. ext hs on the OR1200 core.
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5.5.3 Add Signed and Carry (l.addc) Instruction

The content of GPR rA and GPR rB are added with the carry flagGSR. The result is then
placed into GPR rD.

l.addc
31 . [.].].]26[25].].].JT2aJ20].].].Ja6[as].J.J].J11 10 9 [ 8 [7].].]4a]3].].]o
Opcode 0x38 D A B Resrved | Opcode0x0 | Resrved | Opcode 0x1
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

Problem Discussion
Different scenarios need to be discussed to understanddbtem with the instructiot. addc.

(A) First of all, we need to know how the instructibnaddc is implemented in the OR1200 core.
Following piece of code shows the implementation of therirdions! . add and! . addc in
the OR1200 ALU.

[*xx%xx 0r1200_alu . wxxxxx [

assign {cy_sum, result_sum} = a + b;

‘ifdef OR1200_IMPL_ADDC

assign {cy_csum, result_csum} = a + b + {32'd0, carry};
‘endif

(B) We also need to know how thresult is generated in the ALU for the write-back stage. The
following piece of code generates thisult (only the cases corresponding to the instructions
| . add andl . addc are taken). It should be noted that the sensitivity list efahways block
does not contaimnesult_csum (I . addc result from (A)).

[#x%xxx 0r1200_alu . wxxxxx [
always @(alu_op or a or b or result_sumor result_andor macrc_op or

shifted_rotatedor mult_mac_result)begin
‘ifdef OR1200_CASE_DEFAULT

casex (alu_op) I/l synopsys parallel_case

‘else

casex (alu_op) I/l synopsys full_case parallel_case
‘endif

‘OR1200_ALUOP_ADD : begin
result = result_sum;

end

‘ifdef OR1200_IMPL_ADDC

‘OR1200_ALUOP_ADDC : begin
result = result_csum;

end

‘endif

end

(C) Nextwe need to know is how the carry flag is generated érAthU) from thecy_sum and the
cy_csum signals (from (A)). The piece of code (given below) showd theombinatorial logic
generates the carry flagyforw) and a write enable signaty_we) for the supervision register
(SR).
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[*xx%xx 0r1200_alu . wxxxxx [

always @(alu_op or cy_sum
‘ifdef OR1200_IMPL_ADDC
or cy_csum
‘endif
) begin
casex (alu_op) /I synopsys parallel_case
‘ifdef OR1200_IMPL_CY
‘OR1200_ALUOP_ADD : begin
cyforw = cy_sum;
cy_we = 1'b1;
end
‘ifdef OR1200_IMPL_ADDC
‘OR1200_ALUOP_ADDC: begin
cyforw = cy_csum;
cy_we = 1'b1;
end
‘endif
‘endif
default: begin
cyforw = 1'b0;
cy_we = 1'b0;
end
endcase
end

(D) Further, we need to know how tlearry bit is updated in the SR. The following piece of code
gives this detail. The carry flagyforw) and the write enable signaty we) from (C) first
updates the carry bit ito_sr that further updates the SR register. It is very importarridte
that the freeze logic is not considered when updating thergRakso thecarry flag.

[#%%%xx Or1200_SpPrs. vexxxx /[

/1l
/I Write enables for SR

/1
assign sr_we = (write_spr & sr_sel) | (branch_op == ‘OR1200_BRANGP_RFE) |
flag_we | cy_we;
/1
/I Supervision register
/1

always @(posedge clk or posedge rst)

if (rst)
sr <= #1 {1’bl, ‘OR1200_SR_EPH_DEF, {‘OR1200_SR_WIDF38{1'b0}}, 1'b1};

else if (except_started)begin
sr[‘OR1200_SR_SM] <= #1 1'b1l;
sr['OR1200_SR_TEE] <= #1 1'b0;
sr[‘OR1200_SR_IEE] <= #1 1'b0;
sr[‘OR1200_SR_DME] <= #1 1'b0;
sr[‘'OR1200_SR_IME] <= #1 1'b0;

end

else if (sr_we)
sr <= #1 to_sr[‘'OR1200_SR_WIDTH1:0];

/=1t is clear that SR is updated from TO_SR, and then we need towkhow
TO_SR is being updated/

assign to_sr[‘OR1200_ SR_CY] =
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(branch_op == ‘OR1200 BRANCHOP_RFE) ? esr[‘OR1200_SR]CY
cy_we ? cyforw : (write_spr & sr_sel) ? spr_dat_o['OR128R _CY] :
sr[‘OR1200_SR_CY [;

(E) The next thing we need to understand is how the irptry flag is generated for thle addc
instruction. The following code shows that tbery flag is combinatorially generated from the
SR register’s carry bit.

[*xx%xx Orl200_SPrs.vxxxxx /[
/1
/I Carry alias
/1
assign carry = sr[‘OR1200_SR_CY];

(F) Further, it is interesting to see how the write enablaaidor the register file is generated in
the OR1200 core. The code given below shows that the redjist@rite enable signalf{_we)
is controlled by the freeze logic for the write-back pipelstageb_freeze). The register file
can be written only when the write-back stage is not frozen the signaivb_freeze is low.
Note that we are not considering the register file write eméidoim the SPRS but only from the
CPU control.

[# %%k OrL200_rf. vxssss [
/1l
/I RF write enable is either from SPRS or normal from CPU coaltr
/1l
always @(posedge rst or posedge clk)
if (rst)
rf_we_allow <= #1 1'bl;
else if (~wb_freeze)
rf_we_allow <= #1 ~flushpipe;

assign rf_we = ((spr_valid & spr_write) | (we & ~wb_freeze)) & rf_wallow & supv |
(| rf_addrw));

Errors with Instruction | . addc

As we have established a good understanding of thedc implementation in the OR1200, we
now discuss the found errors with this instruction.

Error in the OR1200 core

This result indicates an implementation error we found en@R1200 ALU. It can be seen in
the waveform (Figureq.1q) that an instruction . addi (0x9d72_a73f) is in the execution stage
(ex_insn) at time 975075 ns. The destination register for this irtston is rD[11], register operand
one is rA[18] (OxOeeb_4c9e) and the immediate value is Dx#3f. The €arry) flag is zero at
the time of execution of this instruction (at time 975075. nBjle execution results of tHe addi
implementation in (A) and (B) are given below:
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At time = 975075 ns.

cy_sum =1

result_sum = OxOeea_f3dd

cy_csum =1

result_csum = OxOeea_f3dd (The ‘carry’ isot updated yet.)
carry =0

result = O0xOeea_f3dd

As the carry flag is registered in the SR (in (D)),
cycle later. Hence, attime = 975085 ns.

carry =1

cy_csum =1

result_csum = OxOeea_f3de

it is upddteone clock

The carry flag is first updated to_sr (in (D)) in the same clock cycle (at time 975075 ns) and
then in the registeBR in the next clock cycle (at time 975085 ns). It means thatctirey flag
coming from (D) into the ALU (in (A)) is updated in the next clocycle.

The next instruction executedx_insn) on the OR1200 core is. addc (0xe399 7001) at time
975105 ns. The destination register is rD[28], registerape one is rA[25] (0x4d7b_f415) and
register operand two is rB[14] (0x0674_0760). Tdaey flag is set by the time of execution of this
instruction (at time 975105 ns). The results after the eti@cwf this instruction are given below.

At time = 975105 ns.

cy_sum = 0

result_sum = 0x53effb75

cy_csum = 0

result_csum = 0x53effb76 (The ‘carry’ isiot updated yet.)
result = 0x53effb76

Since the carry flag is updated one clock cycle later (in (D))
Hence, attime = 975115 ns.

cy_sum = 0
result_sum = 0x53effb75
cy_csum = 0
result_csum = 0x53effb75
result = 0x53effb76

It should be noted that once the carry flag is updated (at tin% 85 ns), theesult_csum is
changed in this execution. As it is not included in the savisitlist of the al ways block in (B), it
does not effect theesult. Hence, a correct result (0x53ef_fb76) is stored into tietidation register
rD[28] at time 975135 ns. It takes several cycles to writerdwster file because the write enable
signal ¢f_we) is controlled by the write-back freeze logel{_freeze) as described in (F).

The next instruction execute@x_insn) on the DUV is agairl . addc (0xe299_7001) at time
975135 ns. The destination register is rD[20], registerape one is rA[25] (0x4d7b_f415) and
register operand two is rB[14] (0x0674_0760). Tdzery flag is zero by the time of execution of
this instruction (at time 975135 ns). The results after ttexation of this instruction are as follow.

cy_sum = 0
result_sum = 0x53effb75
cy_csum = 0
result_csum = 0x53effb75
result = 0x53effb76
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Note that the only difference between the current instomc{0xe299 7001) and the previous
instruction (0xe399_7001) is the destination operandv({pus = rD[28] and current = rD[20]).
The rest of the bits in both instructions are exactly the saim¢he ALU implementation (in (B))
the destination operand is not included in the sensitivdlydf theal ways block. Therefore, the
result can not take the new calculated valueafult_csum. Consequently, the destination register
gets a wrong value (0x53ef_fb76) at time 975165 ns. Figbire] shows a mismatch between the
OR1200 core and its golden model (ISS) because of this wrahg v This means that the temporal
result must be included in the sensitivity list of theways block (in (B)).

# insn_to_insn type 975155 : DUT status start

# Insn to DUT :: L_ADDC = 2897001 : cD[20] = 0£89%a=b . rA[25] = 4d7h£415 : rE[14] = 0&740760
# GPR[0] == 00000000 : GPR[1] == Sech069Z : GPR[Z] == O0le860ad : GPR[3] == 1c35B7f3

# GPR[4] == cO88e247 . GPR[S] == 0000c792 : GPR[&] == 4eed6788 . GPR[7] == 4d7cl6ed

# GPR[B] == 4d7cl6ed : GPR[Y] == 0flef9Zc : GPR[10] == f45h3517 : GPR[11] == Oeeafidd

# GPR[12] == afe6o6BS . GPR[13] == T5a2005c : GPR[14] == 06740760 : GPR[15] == 0f8%aaa

# GPR[16] == 931lcdBe : GPR[17] == c98934da : GPR[18] == OeebdcBe : GPR[19] == Sethleft

# GPR[Z0] == 0£8%aab : GPR[Z1] == afefd®8c : GPR[Z2Z] == lacd274f : GPR[23] == 0£89133a

# GPR[24] == O0£B9cfSZ . GPR[Z5] == 4d7hfd4ll . GPR[Z6] == bldfd374 . GPR[ZT] == B5Ehcfae

# GPR[28] == L3effh76 : GPR[29] == ffe0cfbh : GPR[30] == lacdeflc : GPR[31] == bldeefel

# SR == 00003001 : EPCR == 00000000 . EEAR == 00000000 . ESR == 00008001

#* F == [l . BF == [l cov == [l

# PC == 0001fced

# 1nsn_to insn type 975155 : DUT status end

#*

* Fatal: MVC MONITOR: 975165 compare_gpr FAILED:iss_gpr[20] = 53effh75 : dut_gpr[20] = S3effhTe

Time: 975165 ns  Scope: orlZ00 th top mwe_monitor. compare gpr
Mote: %finish s A fereSewe_orlZ200 mvc monitor. sw (865
Timg: 975165 ns Iteration: 2 Instance: forl200_th_top/mwc_monitor::ouon

i+

Figure 5.14Results mismatch df. addc from the OR1200 and the ISS.

Error in the |ISS

Besides the errors in the OR1200 core we find that the ISS asaproblem with the carry
flag implementation. This scenario is discussed here. TBen$lementation of the instruction
| . addc is given below.

[x%%%xxx @Xecgen . & xxxx /[

case Ox1:
/+ Not unique: real mask fffffffffc00030f and current mask 0O®Of differ — do
final check =/
if ((insn & 0xfc00030f) == 0xe0000001) {
[+ Instruction: |.addc =/
{
uorreg_t a, b, c;
/+ Number of operands: 3«/
a = (insn >> 21) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
b = (insn >> 16) & 0x1f;
#define PARAML cpu_state.reg[b]
c = (insn >> 11) & 0x1f;
#define PARAM2 cpu_state.reg[c]

{ /* "l_addc" =/
orreg_t templ, temp2, temp3;
int8_t temp4;

temp2 = (orreg_t)PARAMZ;
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temp3 (orreg_t)PARAML;

templ temp2 + temp3;

if (cpu_state.sprs[SPR_SR] & SPR_SR_CY)
templ++;

SET_PARAMO(templ);

SET_OV_FLAG_FN (templ);

if (ARITH_SET_FLAG) {

if ('templ)
cpu_state .sprs[SPR_SR] |= SPR_SR_F;
else
cpu_state.sprs[SPR_SR] & ~SPR_SR_F;
}
if ((uorreg_t) templ < (uorreg_t) temp2)
cpu_state.sprs[SPR_SR] |= SPR_SR_CY;
else

cpu_state.sprs[SPR_SR] & ~SPR_SR CY;

temp4 = templ;
if (temp4 == templ)
orlk_mstats . byteadd ++;
}

#undef SET_PARAM
#undef PARAMO
#undef PARAM1
#undef PARAM2

if (do_stats) {
current—>insn_index = 177; /[ "l.addc" =/
analysis(current);

cpu_state.reg[0] = 0;/* Repair in case we changed it/

} else { /x Invalid insn =/

|_invalid ();
if (do_stats) {
current—>insn_index =-1; [ "22?" x|/
analysis(current);
}
cpu_state.reg[0] = 0;/+ Repair in case we changed it/
}
}
break;

In this scenario, the first instruction sent to the 1S$.iaddc (Oxel49 2801) with the des-
tination register rD[10], the register operand one rA[9}fffd_ffff) and the register operand two
rB[5] (Ox0000_d3db). After the execution of this instractithe destination register gets the result
(Ox0000_d3da) and the carry flag (CY) is set. The executisnli®and status registers of the ISS
are as given below.

# L ADDC = 0xel492801 : rD[10] = 0x0000d3da : rA[9] = Oxffffffff : rB[5] = 0x0000d3db
# SR == 0x00008401 : EPCR == 0x0000068c : EEAR == 0Oxffffc393 :RES= 0x00008401
# F == :CYy =1 :0V==0 # PC == 0x00000650

The next instruction sent to the ISS is aghimddc (0xe349_7801) with the destination register
rD[26], the register operand one rA[9] (Oxffff_ffff) andetregister operand two rB[15] (Oxffff_ffff).
By considering the ISS implementation of the instructioaddc (given above) there are following



5.5 OpenRISC1200 Error Reports 104

results.
temp2 = Oxffffffff
temp3 = Oxffffffff
templ = Oxfffffffe

However, a correct value aémp1 is Ox1_ffff fffe but since it is a 32-bit register it only cen
tains 32 bits (Oxffff_fffe). Since the carry flag is set (CY ¥ 1he value oftempl is incremented
(Oxffffffff). Moreover, the values inempl andtemp2 are equal. Hence, the carry bit in the super-
vision register (SR) is cleared. So the value in the SR isrmech because a correct result of this
execution leads to a set carry bit. The mismatch between fhefShe ISS and the OR1200 is
shown in Figure$.15.

# insn_to_insn type 12905 . DUT status stact

# Insn te OUT . L annc = 3407801 rD[E26] = fEEEEEFE: cha[ 3] = £ELEEEFE: rB[15] = fEEfFFEF
# GPR[0] == 00000000 : GBR[1] == OO03E££f . GPR[Z] == 00000012 : GPR[3] == 47Thlffff
# GPR[4] == fffffdee : GPR[Z] == 0000d3db : GPR[G6] == 47Thlfffd : GPR[7] == 0000£455
# GPR[8] == £E£££Tffd : GPR[Y] == £ff£f££ff . GPR[10] == 0000d3da : GPR[11] == 47h1fd7d
# GPR[1Z] == ffffbcald : GPR[13] == 00003283 . GPR[14] == ffffebfb : GPR[15] == fEffffff
# GPR[16] == 336h0000 : GPR[17] == 00008£0a : GPR[18] == 00032c24 : GPR[1D] == hi4e09dc
# GPR[Z0] == EE££££fff : GPR[Z1] == 47bl:Z%9a2 : GPR[ZZ] == 00006af7 : GPR[Z3] == 00006b7d
# GPR[Z24] == 00000949 : GPR[25] == 00000007 . GPR[Z6] == £E£££ffff . GPR[2V] == ffffdlae
# GPR[Z8] == £2c90000 : GPR[29] == 00016493 . GPR[30] == f£fffef9fh : GPR[31] == OOE££££d2
# SR == 00003401 : EPCR == 0000068 : EERR == £fffc393 . ESR == 00003401
# F == [ ¢ Y == 1 o Ov == 0

# PC == 0000065c:

# insn_to_insn type 12905 : DUT status end

#*

*

Fatal: MVC MONITOR: 12915 © compare sr FAILED: i1ss sr = 00008001 : dut_sc = 00003401
Time: 12915 ns  Scope: orl200_th_ top. mwc_meonitor. compace st

Hote: %finish FE fenvisvc orl200 v monitor. sviSeD)

Time: 12015 ns Iteration: 2 Instance: For1200_th_top/mve_monitor: :run

i+

Figure 5.15Results mismatch df. addc from the OR1200 core and the ISS.

Conclusion

The instructionl . addc implementation in the OR1200 core was found to be erroneenause
it does not include the result of the instruction in the givisi list of the al ways block (in (B)).
Moreover, it is very important to note that the carry flag ie tAR1200 core is not controlled by
the freeze logic, whereas the update of the destinatiostexgs controlled. It leads to an update
of carry in (A) before the result is stored and a wrong carry could sedd A synthesis tool will
automatically add the temporal result to the sensitivisy ¢if theal ways block with a warning.
However, the implementation will still not work because thery flag is not controlled by the freeze
logic.
Further, the ISS implementation to update the carry flag msestor all instructions (as for
| . addc). This implementation has a problem and generates an gataresult. It means that all
instructions (e.gl,. add, | . addi , | . addi ¢ etc.) with this implementation to update the carry flag
in the ISS may lead to a wrong carry. When this carry is addedaahculation result goes wrong.
Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instruction . addc. This means that the compiler does not either implementirtsuction or
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often generate it. This is the reason why this error stayedentified before. However, the OR32
assembler could assemble code that uses this instruction.
Consequently, the instructidn addc is excluded from the main verification test of the OR1200

core.
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Figure 5.16Simulation results off. addc on the OR1200 core.
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5.5.4 Divide Signed (l.div) Instruction

The content of GPR rA is divided by the content of GPR rB. Thaulteis then placed into GPR
rD. Both rA and rB are treated as signed operands. If theahivsszero the carry flag (SR[CY]) is
set.

l.div
3i[.[.].[.T26[25].].[.J2a20].].].Ta6][a5].].].J11 10 9 [ 8 [7].1.T4[3].1.]0
Opcode 0x38 D A B Rewrved | Opcode 0x3 Reserved Opcode 0x9
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

ISS implementation ofl . di v

The ISS implementation of the instructibndi v is given below. It shows if a divisotdmp3) is
zero then the instruction is going to generate an illegaéption. Whereas from the instruction’s
description (given above), it is required to set the carny.fla

[*%%%xxx @Xecgen . & xxxx /[

if ((insn & 0xfc00030f) == 0xe0000309) {
/* Instruction: |.div */
{
uorreg_t a, b, c;
/+ Number of operands: 3x/
a = (insn >> 21) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
b = (insn >> 16) & 0x1f;
#define PARAML cpu_state.reg[b]
¢ = (insn >> 11) & 0x1f;
#define PARAM2 cpu_state.reg[c]
{ [+ "l_div" =/
orreg_t temp3, temp2, templ;

temp3 = PARAMZ;

temp2 = PARAML;

if (temp3)
templ = temp2 / temp3;

else {
except_handle (EXCEPT_ILLEGAL, cpu_state.pc);
return ;

}

Figure .17 shows the execution results of the instructiondi v (Oxel133_5b09) executed
on the ISS. The divisor (rB[11]) is zero and the instructi@nerates an illegal exception (PC =
0x0000_0700) instead of setting the carry flag (CY).

OR21200 implementation ofl . di v

The instructiond . di v and! . di vu are optional to implement in the OR1200 core and take 32
clock cycles to execute. Both instructions do not drive theycflag in the OR1200 core. Whereas
from their description, both instructions are requireddbtle carry flag if the divisor is zero.



5.5 OpenRISC1200 Error Reports 108

# 1nsn_to_insn type E05 : ISS status start

# Insn to ISS :: L DIV = e1335h09 : rD[9] = 00000000 : cA[19] = 00000000 : cB[11] = 00000000
# GER[O] == 00000000 : GPR[1l] == 0000E2k3e : GPR[Z] == 00000000 : GPE[3] == 00000000
# GPR[4] == 00000000 : GPR[S] == 00000000 : GPR[&] == 00000000 : GPE[V] == 0000d3Zc
# GPR[Z] == 00000000 : GPR[%] == 00000000 : GPR[10] == 00000000 : GPRE[11] == 00000000
# GPR[1Z] == 00000000 : GPR[13] == 00000000 : GPR[14] == 00000000 : GPE[15] == 00001laSf
# GPR[16] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00009L18 : GPRE([19] == 00000000
# GPR[20] == 00000000 : GPR[Z21] == 00005149 : GPR[2Z] == 00000000 : GPE[Z23] == 00000000
# GPR[24] == 00000000 : GPR[Z5] == 00004685 : GPR[Z26] == 00000000 : GPRE[ZF] == 000091ab
# GPR[28] == 00000000 : GPR[29] == 00000000 : GPR[30] == 00000000 : GPR[31] == 00000000
# SR == 00002001 : EPCR == 0000013c : EEAR == 0000013c : ESRE == 00003001
# F == 0 . O == 0 o Ov == 0

# PC == 00000700

# 1nsn_ to insn type 505 : ISS status end

Figure 5.17Instructionl . di v generates an illegal exception at the ISS.

Conclusion

A division by zero does not generate any compilation errahieyOR1200 C/C++ compiler. In the
ISS, the instructions. di v andl . di vu generate an illegal exception if a divisor is zero and there
is no effect on the carry flag. Whereas, in the OR1200 cordy msatruction neither generates an
illegal exception nor sets the carry flag. This is a clear matem between the ISS implementation
and the OR1200 implementation of the instructibndi v andl . di vu. It should be also noted that
both instructions do not effect the carry flag when a divisozero (neither in the ISS nor in the
OR1200 core). This is a mismatch between the implementafiboth instructions and their speci-
fication provided in the OpenRISC1000 architectmmanual[11]. Figure [5.18 shows a waveform
that clearly depicts this mismatch. At time 555 ns, the ington| . di v (Oxel133_5b09) is in the
execution stage with operand one (a = 0x0000_0000) and rghéweo (b = 0x0000_0000). The
divisor is zero but the carry flag is not set. Additionallye tivaveform confirms that the instruc-
tion| . di v takes 32 clock cycles to execute. Consequently, the iniing . di v andl| . di vu are
excluded from the main verification test of the OR1200 core.


http://www.opencores.org/openrisc,architecture
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Figure 5.18Simulation results off. di v on the OR1200 core.
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5.5.5 Find Last 1 (I.fl1) Instruction

Starting from the MSB, the position of the last ‘1’ bit in GPR is placed into a GPR rD. The
instruction checks for ‘1’ bit in rA and decrements the cofamntevery zero bit until the last ‘1’ bit
is found. If the last ‘1’ bit is found in the MSB, 32 is writtentd rD. If the last ‘1’ bit is found in
LSB, 1is placed into rD. If no ‘1’ bit is found, zero is placado rD.

1.f11
1. [.].].]26[25].].].T2aJ20].].].Ja6[as] . J.J].J11 10 9 [ 8 [7].].]4a]3].].]o
Opcode 0x38 D A B Resrved | OpcodeOx1 | Reserved Opcode Oxf
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

ISS implementation ofl . f1 1

The ISS implementation of the instructibnf | 1 (given below) shows that it is an invalid instruc-
tion which is not implemented in the ISS so far. Wheneverisgriiction id . f1 1, the ISS is going
to generate the exception of an illegal instruction.

[% xxkkxxxxk  @XECYEN . @xxxkkkkxx [

case Ox1:
/+ Not unique: real mask fffffffffc00030f and current mask 0OB0f differ — do
final check =/
if ((insn & 0xfc00030f) == 0xe000010f) {
[+ Instruction: |.fl1 «/
{
uorreg_t a, b;
[+ Number of operands: 2«/
a = (insn >> 21) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
b = (insn >> 16) & 0x1f;
#define PARAML cpu_state.reg[b]
I_invalid ();
#undef SET_PARAM
#undef PARAMO
#undef PARAM1

if (do_stats) {

current—>insn_index = 198; [+ "|.fl1" «/
analysis (current);
}
cpu_state.reg[0] = 0;/+ Repair in case we changed it/
} else {
[+ Invalid insn =/
{
I_invalid ();

if (do_stats) {
current—>insn_index =-1; [ "22?" x/
analysis (current);

cpu_state.reg[0] = 0;/« Repair in case we changed it/
}
}

break;
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Figure .19 shows the execution results of thefl 1 instruction (Oxe2ba_b10f) from the ISS.
Since it is an illegal instruction, it generated an illegateption (PC = 0x0000_0700).

insn_to_insn type 265 : IS5 status start
Insn to IS5 :: L _FL1 = efbabl0f : D[Z1] = DDDDDDDD o rh[Z26] = DDDDEQa3 : rE[22] = 00000000

*+ Fatal: MVC_MONITOR 285:: compare_pc() FAILED:: ISE_PBC == 00000700 .. DUT BC == DOOO01z0
Time: 285 ns  Scope: or1200_th _kop. mee nonitor. COMpare_peo

++ Note: Zfinish [ fenvfsvc orlzﬂﬂfmvc monitor. sv(358)
Time. 285 ns Tteration: 3 Instance For1200_th top/mewe_monitor - :cun

#

#

# GPR[0] == 00000000 : GBR[1] == 00000000 - GPR[Z] == 00000000 - GRR[3] == 00000000
# GPR[4] == 00000000 : GPR[S5] == 00000000 : GBR[&] == 00000000 : GPE[T] == 00000000
# GPR[8] == 00000000 : GPR[9] == 00000000 : GPR[10] == 00000000 : GPE([11] == 00000000
# GPR[1Z] == 00000000 : GPR[13] == 00000000 : GER[14] == 00000000 : GPE[15] == 00001aGf
# GPR[16] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00000000 : GPE([19] == 00000000
# GPR[Z0] == 00000000 : GPR[21] == 00000000 : GBR[Z2] == 00000000 : GPR[Z23] == 00000000
# GPR[24] == 00000000 : GPR[25] == ffffde%5 : GPR[Z6] == 0000e9a3 : GPR[Z7] == ffff%1ah
# GPR[E8] == 00000000 : GPR[29] == 00000000 : GER[30] == 00005381 : GPE([31] == 00000000
# SR == 00008201 : EPCE == 0000011c : EEAR == 0000011c : ESE == 00008201
#F ==1 ¢ Y == 10 c OW == 0

# PC == 00000700

# insn_to_insn type 265 ¢ ISS status end

#

#

#

#

#

Figure 5.19Execution results df. f| 1 on the ISS.

OR1200 implementation ofl . f1 1

There is no implementation of the instructibnf | 1 in the OR1200 core. However, when we send
an instruction . f| 1 to the OR1200 core, another instruction is executed inst&ého instruction
is “Find First 1" ( . f f 1)* and its implementation in the OR1200 core is given below.

[x%%xxxx  0rl200_defines .awsxxxx /
‘define OR1200_ALUOP_FF1 4°'d15

[ % kxkkkxk orlzoo_alu CVkkkkkkk k[
‘ifdef OR1200_CASE_DEFAULT

casex (alu_op) /I synopsys parallel_case
‘else

casex (alu_op) /I synopsys full _case parallel_case
‘endif

‘OR1200_ALUOP_FF1: begin
result = a[0] 2 1 : a[l] ? 2 : a[2] ? 3 : a[3] ? 4 : a[4] ? 5 : a[5] ?
6 : a[6] ? 7 : a[7] ? 8 : a[8] ? 9 : a[9] ? 10 : a[10] ? 11 : a[l1l] ?
12 : af12] ? 13 : a[13] ? 14 : a[l14] ? 15 : a[l5] ? 16 : a[l6] ? 17 :
af[l7] ? 18 : a[l18] ? 19 : a[l1l9] ? 20 : a[20] ? 21 : a[21] ? 22 : a[22]
? 23 : a[23] ? 24 : a[24] ? 25 : a[25] ? 26 : a[26] ? 27 : a[27] ? 28 :
af[28] ? 29 : a[29] ? 30 : a[30] ? 31 : a[31] ? 32 : O;

end

Within thel . ff 1 implementation, OR1200_ ALUOP_FF1 is defined as 4'd15 (OxF) which is
actually an ALU opcodealu_op). The ALU opcode is described by the last 4 bits of an ALU
instruction. The bit encoding of the instructibnf | 1 shows that the last four bits are same for both

1. ff1: Starting from the LSB, the position of the first 1’ bit in GPR is placed into GPR rD. This
instruction checks for "1’ bit and increments the count feery zero bit. If the last "1’ bit is found in the
MSB, 32 is written into rD. If the last '1’ bit is found in the LE§ 1 is placed into rD. If no '1’ bit is found,
zero is placed into rD.
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instructions i.e., OxF. The only difference in the bit eniogdof both instructions is in bits [9:8].
Hence, the implementation shown above executes for battugt®ns. This means that even if the
instructionl . f| 1 is not implemented in the OR1200 core, it does not generailéegal exception.
Moreover, it gives a wrong result since it finds the positibthe first ‘1’ instead of the last '1".

It can be seen from the waveform in Figute(Q that the instructiori . f1 1 (Oxe2ba_b10f) is
executed on the OR1200 core at time 315 ns. Register operans @x0000_e9%9a3 and the ALU
opcode is OxFdlu_op). The calculated result is Ox1 i.e., the first 1" is found i&B. This is a
correct result for the instructidn f f 1 but an incorrect result for the instructibnf | 1. The correct
result for the instructioth. f1 1 is 16 i.e., the last "1’ bit in register operand one (Ox00®&a3). It
means that even if the instructionf| 1 is not implemented in the OR1200 core, the instruction
| . ff1isexecuted instead.

Conclusion

The instructiorl . f 1 1 is neither implemented in the ISS nor in the OR1200 core. kewavhen
this instruction is sent to the OR1200 core, the instructioff 1 is executed instead of generating
an illegal instruction exception. As a result, the exequbdan unimplemented instruction is never
reported. Hence, the instructionf | 1 is excluded from the main verification test of the OR1200
core.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instructionl . ff 1. This means that the compiler does not either implementitisisuction or
often generate it. This is the reason why this error stayédeuntified before. However, the OR32
assembler could assemble code that uses this instruction.
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Figure 5.20Simulation results off. f| 1 on the OR1200 core.
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5.5.6 Multiply Immediate Signed and Accumulate (I.maci) Irstruction

The content of GPR rA is multiplied with a sigh extended imiaggl The result is then truncated
to 32 bits and added to the registers MACHI and MACLO (MAC aunalator). All operands are
treated as signed integers.

|.maci
T T.T26]25].].].T2aJ2o].J.J.Ja6Jas] . J.J.JasJao[ . T.T.T.T.T.
Opcode 0x13 Immediate Reserved A Immediate
6 bits 5 bits 5 bits 5 bits 11 bits

31] [.T.T.To

ISS implementation ofl . maci

Thel . maci implementation in the ISS (given below) shows that the apetra’ (register rA) is
taken from bits [20:16] of an instruction (insn[20:16]). &bit encoding of . maci tells that bits
[20:16] are not used (reserved). This is a considerablaapsocy between the specifications of
| . maci and its implementation in the ISS.

[ % ddeke ko kK kK EXECQEeNn . Exkkxxkik % /

case 0x13:
/* Not unique: real mask fffffffffc000000 and current mask 30000 differ — do final
check =/
if ((insn & 0xfc000000) == 0x4c000000) {
[+ Instruction: |.maci =/

{
uorreg_t a, b;
[+ Number of operands: 2«/
a = (insn >> 16) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state .reg[a]
b = (insn >> 0) & Ox7ff;
b |[= ((insn >> 21) & 0x1f) << 11;
if (b & 0x00008000) b |= 0xffff8000 ;
#define PARAML b
{ [+ "l_mac" */
uorreg_t lo, hi;
LONGEST |
orreg_t x, y;

lo = cpu_state.sprs[SPR_MACLO];
hi = cpu_state.sprs[SPR_MACHI];
X PARAMO;
y PARAM1;
/% PRINTF ("[%"PRIXREG",%"PRIXREG"]\t", x, y);=/
| = (ULONGEST)lo | ((LONGEST)hi << 32);
| += (LONGEST) x » (LONGEST) vy;

/+ This implementation is very fast it needs only one cycle for mac.*/
lo = ((ULONGEST)|) & OXFFFFFFFF;
hi = ((LONGEST) 1) >> 32;
cpu_state . sprs[SPR_MACLO] lo;
cpu_state.sprs[SPR_MACHI] = hi;
[+ PRINTF ("(%"PRIXREG",%"PRIXREG"\n", hi, lo);*/
}
#undef SET_PARAM
#undef PARAMO
#undef PARAM1



5.5 OpenRISC1200 Error Reports 115

if (do_stats) {
current—>insn_index = 106; /+ "l.maci" =/
analysis(current)

}

} else {
[+ Invalid insn =/

|_invalid ()

if (do_stats) {
current—>insn_index =-1; [+ "22?2" x|/
analysis(current)

}
}
}

break;

Figure p.21] shows that the instructioh. naci (0x4cf3_10ef) is sent to the ISS. According to
the implementation of the instructidn nmaci , operand one is rA[19] and the immediate value is
0x0000_38ef. The register rA is taken from bits [20:16] & thstruction and the 16-bit immediate
is taken from bits [25:21] and bits [10:0] (0x0000_38ef). viwer, according to the bit encoding
of the instruction . maci , bits [20:16] are not used (reserved) and the register rAlshimave been
taken from bits [15:11] i.e., rA[2].

# insn_to insn type 1135 : IS5 status start

# Insn to ISS :: L_MACTI = 4cf310ef : rA[19] = 00007def : Immed = 000032ef

# GPE([0] == 00000000 : GPE([1] == 00000000 : GPR([Z] == 000035ea : GPR([3] == 00000000
# GPRE([4] == 00000441 : GPR([S] == 00000000 : GPR([6] == 000078de : GPR([T] == 00000000
# GPE[8] == 00000000 : GERE([9] == 00000000 : GER([10] == 0000d0Za : GER([11] == 00000000
# GPR([12] == 00000000 : GPR(13] == 00000000 : GPR([14] == 00001939 . GPR([15] == 00000000
# GPE[1le] == 00000000 : GERE([17] == 00000000 : GER([18] == 0000bE9c : GER([19] == 00007def
# GPRE[Z0] == 00000000 : GPRE[Z21] == 00000000 : GPR[Z2Z2] == 00000000 : GPR[Z23] == 00000000
# GPRE[24] == 00000000 : GPR([2E5] == 0000de35 : GPR[26] == 0000cc74 . GER([ZT] == 00000000
# GPRE[Z8] == 000019%a : GPRE[Z29] == 00000000 : GPR[30] == 00000000 : GPR([31] == 00000000
# SR == 00008001 : EPCE == 00000000 : EEAR == 00000000 : ESR == 0o0oza0l
#F == [l o BF == 0l c 0w == 0

# PC == 00000194

# ilnsn_to insn type 1135 . IS5 status end

#

# mvc_monitor o 1135: MACLO = 1lcOld=21 @ MaCHI = 00000000

Figure 5.21Execution results df. maci on the ISS.

OR21200 implementation ofl . maci

The OR1200 implementation for the instructibnmaci is given below. It shows that the GPR
used in the execution of this instruction is taken from b#8:16]. The immediate value is taken
from bits [15:0] of the instruction. The waveform in Figure.72 shows the execution of the
instruction! . maci (0x4cf3_10ef). At time 1155 ns, this instruction is in thetimiction decode
stage id_insn). The immediate valuesinm), later used in the execution stage (at time 1185 ns), is
taken from the instruction’s bits [15:0] (0x0000_10ef). thl¢hat the immediate value is not taken
according to the bit encoding of the instructibrmaci which specifies bits [25:21] and bits [10:0]
for the immediate value.
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[x%%%xx Or1200_ctrl . vwxxxxx [

11

I/l Register file read addresses
11l

assign rf_addra
assign rf_addrb
assign rf_rda
assign rf_rdb

if insn[20:16];
if_insn[15:11]7;
if_insn[31];
if_insn[30];

11
/! Decode of imm_signextend
11
always @(id_insn) begin
case (id_insn[31:26]) I/l synopsys parallel_case

/1 1.maci
‘ifdef OR1200_MAC_IMPLEMENTED
‘OR1200_OR32_MACI:
imm_signextend = 1'b1;
‘endif

11
/I Sign/Zero extension of immediates

/1
assign simm = (imm_signextend == 1'b1l) ? {{16{id_insn[15]}}, id_nsn[15:0]} : {{16'b0},
id_insn[15:0]};

Conclusion

A very clear difference between themaci implementation in the ISS and the OR1200 core is
on the bit encoding of the immediate value. The ISS takesntimddiate value from bits [25:21]
and bits [10:0] while the OR1200 core takes the immediateevisiom bits [15:0] of an instruction.
Despite that, GPR rA is taken from the instruction bits [&)ih the ISS and the OR1200 core. This
is not according to the instruction’s bit encoding givenhe OpenRISC1000 architectunganual
where bits [15:11] are specified for GPR rA. In the presenddede differences, it is not possible
to include this instruction in the main verification test lo&#tOR1200 core.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instructionl . naci . This means that the compiler does not either implementrtisuction or
often generate it. This is the reason why this error stayedentified before. However, the OR32
assembler could assemble code that uses this instruction.


http://www.opencores.org/openrisc,architecture

# /or1200_th_topdinsn_ifclk_i [ [ [ I
# /or 200_th_{ sn_ifrst_i 0
# jor1200_th_topdi if 0 T 1 [
-4 /orl 200_th_| _iffdat_th  [4cf3l0ef Mctat Def ledlarg8ad 1570000
4 /orl 200_th_| i L L L
-4 orl ) iffadr ~ |00000130 0130 00000154 | IR \oat
[ 4 @efitier  [4610000 4dafafad 14610000 15870000 P4610000
4cfaioef ddafagad a7hooon
lahdSccTd ldcraioer Jd daffagd
1 hadoooo lah45cc7e l4cfal Def
_____ 7 00001 0ef G [oooaoooon
[ L |
I
]
"""" | ! 00001 Def |fE5d
________ [o000ec74 Doogioef TS S5
i Io [0 o
l4
el poooooooon
000000000M)000000000
B4 o . i 01 [or 101 ik 01
B4 fort ddrh oz 00 11 (il i00
-4 orl
-4 orl l000035ea 00000000
... r"-]l:l'l.-'-.l' !IIIIIII-II-IADII,;S:IIIIIIIIIIII-II-IIEDII:'SIIIIIIIIIIIIII-II-IIEDII:'SIIIIIIIIII”II-IIZIDDI'.;SIIIIIIIIIIIII-IIZ

Figure 5.22Simulation results of . maci on the OR1200 core.
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5.5.7 Multiply Immediate Signed (l.muli) Instruction

The content of GPR rA is multiplied with an immediate valuéheTresult is then truncated to a
32-bit value and placed into GPR rD.

3t . 1. 1.126[25]. 1. [.J2tJ20. . [. ][ . ... .. ... [.[.[.[.I.To
Opcode 0x2c D A Immediate
6 bits 5 bits 5 bits 16 hits

Problem Discussion

Thel.mli implementation in the ISS is working correctly. Howeves iinplementation in
the OR1200 core has an error. The problem belongs to theeflegic implementation for the
instruction. The instructioh. mul i is a multicycle instruction but it is not controlled by thedéze
logic (for the number of execution cycles), as the OR1200ementation shows below.

[x#x%xxx 0rl200_defines .axxxx [
/! ALU instructions multicycle field in machine word
‘define OR1200_ALUMCYC_POS 9:8

[x#x%xxx Or1200_ctrl . vwxxxxx [
11l
/! Decode of multicycle
11
always @(id_insn) begin
case (id_insn[31:26]) I/l synopsys parallel_case

/1 1.sb
‘OR1200_OR32_SB:
multicycle = ‘OR1200_TWO_CYCLES;

/I ALU instructions except the one with immediate
‘OR1200_OR32_ALU:
multicycle = id_insn ['OR1200_ALUMCYC_POS];

[*
ALU instructions (l.add/I.mul etc.) have egode in bits {[31:26],[9:8],[3:0]}.
OR1200_ALUMCYC_POS is bits [9:8] of an instruction that immonly 2’'bl1l for

multicycle instructions (e.g., |.mul, I.div etc.) and 2'®0for single cycle
instructions (e.g., l.add, Il.sub, |.or etc.).
*/

/I Single cycle instructions
default: begin
multicycle = ‘OR1200_ONE_CYCLE;
end
endcase
end

The multicycle signal shows the number of clock cycles that an instructiontie ID-stage
(id_insn)) should take to complete its execution (in the &Xge). The instruction. nul i basically
executes the implementation of the instructiomul in the OR1200 core. For multicycle instruc-
tions bits [9:8] (OR1200_ALUMCYC_POS) are explicitly sjfged as an opcode. This opcode is
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used to specify the number of cycleauticycle signal) that an instruction takes in its execution.
But thel . mul i instruction’s bits [9:8] are not explicitly specified as gocode. The waveform in
Figure .24 shows an instructioh. mul i (0xb266_13a7) in the instruction decode stage (id_insn)
at time 2815 ns. Even if it is a multicycle instruction, tinelticycle signal is low. The instruction

| . muli takes three clock cycles to execute (executds asl ). Hence, its execution result is avail-
able after three clock cycles. Since the execution stagkeoinistruction . mul i is not controlled
by the freeze logic for multicycles and it is treated as alsigcle instruction, an incorrect result
(OxOe4dc_b51e4) is taken at time 2865 ns. For a multicycleuotbn of three clock cycles a correct
result is calculated and available at time 2875mad_prod_r = 0x0101_efe0). Figuré&s[23 shows

a mismatch between the ISS and the OR1200 core results ladtexecution of the same mul i
instruction.

# insn_to_insn type 2795 ;. IS5 status start

# Insn to ISS :: L_MULI = h26613aT : cD[19] = 010lefe0 : cA[ 6] = 00000420 : Immed = 13a7
# GPR[0] == 00000000 : GPR[1] == ffffelal : GPR[Z] == ffffffeb : GPR[3] == 00000000
# GPR[4] == ffffad32 : GPR[&] == 00000000 : GPR[&] == 00000420 : GPR[Y] == 00004S£9
# GPR[B] == DOODEEf2 : GPR[Y] == 00005%el : GPR[10] == OOOOSESZ : GPR[11] == 00000000
# GPR[1Z] == 00005fcd : GPR[13] == 00000000 : GPR[14] == 00000840 : GPR[15] == 00000000
# GPR[16] == 00000000 : GPR[17] == ffffebtZ : GPR[18] == 00006Z=h : GPR[19] == 0l0lefeld
# GPR[Z20] == 0000febS5 : GPR[E1] == 0000%d4 : GPR[2Z] == 0000012 : GPR[E23] == £ff£77fd
# GPR[24] == 0000£5fd : GPR[2E] == f££ffe708 : GPR[Z6] == 00004dd0 : GPR[ZT] == O000LE77
# GPR[ZB] == 00000000 : GPR[Z29] == 00000000 : GPR[30] == O0006fTa : GPR[31] == OOOOD£820
# SE == 00008001 : EPCR == 00000614 : EEAR == fffffEhE : ESR == (0008001
# F == [ ¢ O == [l c 0w == 0

# PC == 00000620

# Insn_to_insn_ type 2795 ;. IS5 status end

#

*Fatal: MWC_MONITOR: 2875 . compare_gpr FATLED: iss_gpr[19]= 010lefel: dut gpr[l5]= Dedchled
Time: 2875 ns  Scope: orlZ200 th top mwc monitor. compare gpr

*Wote: Sfinish s A fenw Seve_orl 200 Mmeve_monitor. sw(B65)
Time: 2875 ns Iteration: 2 Instance: Sorl200 th top/mwc monitor::oun

Figure 5.23Results mismatch df. nul i from the OR1200 core and the ISS.

Conclusion

The instruction . nul i is not working correctly in the OR1200 core. It is a multigy@hstruction
but not controlled by the freeze logic. Therefore, an inecrmesult is selected because of an
incorrect selection time. Hence, it is not possible to idelthis instruction in the main verification
test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instruction . nul i . This means that the compiler does not either implementrtkisuction or
often generate it. This is the reason why this error stayédeuntified before. However, the OR32
assembler could assemble code that uses this instruction.
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5.5.8 Multiply Unsigned (I.mulu) Instruction

The content of GPR rA is multiplied by the content of GPR rBeThsult is then truncated to 32
bits and placed into GPR rD. All operands are treated as dignegers.

l.mulu
31| . J.[.].]26]25].].].J2aJ20].].J.Ja6Ja5] . [ .] .11 10 9 [ 8 [7].].]T4]3].].]o0
Opcode 0x38 D A B Reserved | Opcode 0x3 Reserved Opcode 0xb
6 bits 5 bits 5 bits 5 bits 1 bits 2 bits 4 bits 4 bits

Problem Discussion

The instruction . nul u is neither implemented in the ISS nor in the OR1200 core. ltrigs to
the ORBIS32-1 instruction class of the OpenRISC1000 aechitre and all instructions belonging
to this class are compulsory to implemehi]. The OR1200 core and the ISS both are supposed to
generate an illegal exception for any illegal or unimpletadrnnstruction but the OR1200 core does
not generate an illegal exception in case of the instrudtionul u. This means that the execution
of an illegal or unimplemented instruction is not reportddl.is an implementation fault in the
OR1200 core where the instructibnnul u is executed as an instruction that moves the content of
GPR B to a destination register (rD). The fault can be sedhinvthe OR1200 implementation
given below, which shows thakb (OR1200_ALUOP_IMM = 4'd11) is an ALU opcode to move
an immediate value to a destination register. As the instmu¢ . mul u also contains the opcode
Oxb in its last four bits, the implementation to move an imiatzl value to a GPR is executed
instead and generates a wrong result. Hence, the instuctraul u is not taken as an illegal or an
unimplemented instruction even though it is not implemenitethe OR1200 core. The waveform
in Figure .29 shows that the instructioh. nul u (Oxel147_930b) is in the execution stage at time
2845 ns. The destination register is rD[10], the registearapd one is rA[7] (0x0000_d5f9) and
the register operand two is rB[18] (0x0000_62ab). Whenttsguctionl . nul u is in the execution
stage, the ALU opcodealu_op) is Oxb which is actually the last four bits of an ALU instruction
(insn[3:0]). Further, operand “/or1200_alu/b” (rB[18%)first placed into theesult at time 2845 ns
and then stored into rD[10] (0x0000_62ab) at time 2885 nspide that, neither aexcept_illegal
signal is reported nor the next program counter (PC) is agall exception vector (0x0000_0700).

[x%xxxxx  0rl200_defines .wxxx /[
/1l

/1 ALUOPs

/1l

‘define OR1200_ ALUOP_IMM 4'd11l

[% xxkxxxxx 0r1200_cCtrl . oassxxx [
11
/! Decode of alu_op
11
always @(posedge clk or posedge rst) begin
if (rst)
alu_op <= #1 ‘OR1200_ALUOP_NOP;
else if (lex_freeze & id_freeze | flushpipe)
alu_op <= #1 ‘OR1200_ALUOP_NOP;
else if (lex_freeze) begin
case (id_insn[31:26]) I/l synopsys parallel_case
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/I ALU instructions except the one with immediate
‘OR1200_OR32_ALU:
alu_op <= #1 id_insn[3:0];

[xxkxxkx 0r1200_alu . wsxs* /[
/1
/I Central part of the ALU
/1

‘ifdef OR1200 CASE_DEFAULT

casex (alu_op) /I synopsys parallel_case
‘else

casex (alu_op) /I synopsys full _case parallel_case
‘endif

‘OR1200_ALUOP_IMM : begin
result = b;
end

Conslusion

The instruction . nul u is neither implemented in the ISS nor in the OR1200 core. ltirgs to
the ORBIS32-I instruction class of the OpenRISC1000 aechitre and all instructions belonging
to this class are compulsory to implemeffl] Despite that, the OR1200 core does not generate
an illegal exception but executes a wrong implementatisteand of the instructioh. mul u. Hence,
this instruction cannot be included in the main verificatiest of the OR1200.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instruction . nul u. This means that the compiler does not either implementrtisuction or
often use it. This is the reason why this error stayed unifiedtbefore. However, the OR32
assembler could assemble code that uses this instruction.
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Figure 5.25Simulation results off. nul u on the OR1200 core.
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5.5.9 Unimplemented Overflow Flag (OV)

The overflow flag is the 1 bit of the SR register (considering the initial index to beaje
According to the OR1200 architectural manual a number dfustons (e.g.l . add, | . sub, | . mul
etc.) can alter this flag. But if we look into the implemeraatiof the OR1200 ALU and the SR
(given below), there is no implementation of the overflow flag

[x#%xx%x 0rl200_define .yxxxx [
‘define OR1200_SR_OV 11// Unused

[*%xx%x 0r1200_Sprs. yxxss* [
11
/I What to write into SR
11
assign to_sr[‘OR1200_SR_FO:‘OR1200_SR_OV] =
(branch_op == ‘OR1200_ BRANCHOP_RFE) ? esr[‘OR1200_SR:fR1200_SR_OV] :
(write_spr & sr_sel) ? {1'bl, spr_dat_o[‘OR1200_SR_F@:'‘OR1200_SR_OV]}:
sr[‘OR1200_SR_FO:‘OR1200_SR_OV];
11
/Il Supervision register
11
always @(posedge clk or posedge rst)
if (rst)
sr <= #1 {1'bl, ‘OR1200_SR_EPH_DEF, {‘OR1200_SR_WIDF8{1'b0}}, 1'bl};
else if (except_started)begin
sr[‘OR1200_SR_SM] <= #1 1'b1;
sr[‘OR1200_SR_TEE] <= #1 1’'b0;
sr[‘OR1200_SR_IEE] <= #1 1'b0;
sr[‘OR1200_SR_DME] <= #1 1'b0;
sr[‘OR1200_SR_IME] <= #1 1'b0;
end
else if (sr_we)
sr <= #1 to_sr[‘OR1200_SR_WIDTH 1:0];

[*%%xx%x 0r1200_alu . wxxsxx [

casex (alu_op) /I synopsys parallel_case
‘else

casex (alu_op) /I synopsys full _case parallel_case
‘endif

‘OR1200_ALUOP_ADD : begin
result = result_sum;
end
‘ifdef OR1200_IMPL_ADDC
‘OR1200_ALUOP_ADDC : begin
result = result_csum;
end
‘endif
‘OR1200_ALUOP_SUB : begin
result = a— b;
end
‘ifdef OR1200_MULT_IMPLEMENTED
‘ifdef OR1200_IMPL_DIV
‘OR1200_ALUOP_DIV,
‘OR1200_ALUOP_DIVU,
‘endif
‘OR1200_ALUOP_MUL : begin
result = mult_mac_result;
end
‘endif
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5.6 Discrepancies Between OR1200 and Golden Model

5.6.1 Overview

This section presents the acquired results corresponditing tdiscrepancies between the OR1200
core and its ISS. These discrepancies are as given below.

¢ An instruction is implemented in the OR1200 core but nohim kSS or vice versa.

¢ An instruction is implemented in the OR1200 core and in 88 but its behavior is not the
same.

e An instruction is not working correctly in the ISS.

All found discrepancies between the DUV and the ISS are pteden the following subsec-
tions.

5.6.2 Jump Register and Link (l.jalr) and Jump Register (L.jr) In-
structions

The effective address for these jump instructions is theéerrof GPR rB. Both instructions have
a delay slot. The program unconditionally jumps to thisaffe address. In case of the instruction
| .jalr, the address of the instruction after the delay slot in§tvods placed into the link register
(GPR 9). The link register is not allowed to be used as rB irirteructionl . j al r.

l.jalr
st . [.[.].T26f2s[. [.[.[.T.JT.].T.Taefas]. [.[.JazJao] . J.T.T.T.].T.T.T.To
Opcode 0x12 Reerved B Reserved
6 bits 10 hits 5 bits 11 hits
Ljr
3ar].[.].].J26[2s]. [.[.T.T.T.T.-T.JaeJas[.J.[.JaaJao] . J.T.T.T.T.T.T.T.Jo
Opcode 0x11 Resrved B Resrved
6 bits 10 bits 5 bits 11 bits

ISS implementation ofl . jalr andl . jr

The ISS implementation of both instructions is provided ppandix @.3). The implementation
does not include any exception handling if these instrustivy to jump to an unaligned address.
Both instructions set thec_delay (the address of the delay slot instruction) with the contéi@PR
rB. The instructionl . j al r additionally stores the address of the instruction afterdblay slot
instruction in the link register (GPR 9).

The implementation of the upcall functiopeferi c_read_wor d) is given below. This upcall
is used to fetch a new instruction or data (for Loads) frometthéress space of a generic device. The
implementation shows that whenever there is an unaligned access to fetch a new instruction
or to load a new data word, this upcall gives an error on thedstal output. Further, an unaligned
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access forbids the call to trext _read() function (upcall to the public interface of the ISS to
read from an external peripheral). Hence, the upcall ismgeaerated andeneric_read_word
returns 0x0000_0000, which is taken by the ISS as the nettuiion to execute. According to
the ORBIS32-1 instruction class, 0x0000_0000 is a simpiegunstruction . j ) followed by a
delay slot. The PC address calculation for the next indtrmdthe delay slot instruction) is PC + 4.
Hence, the next PC is also an unaligned address.

[ % *kxdxhkxHhx Kk generic L Crkkkkkkk KKk * /

static uint32_t generic_read_word (oraddr_t addrnoid *dat)

{
struct dev_genericxdev = (struct dev_generic ) dat;
if (!config.ext.class_ptr)
{
fprintf (stderr, "Full word read from disabled generic deei\n")
return O0;
else if (addr >= dewv>size)
fprintf (stderr, "Full word read out of range for generic diee %s "
"(addr %" PRIXADDR ")\n", dev>name, addr)
return O0;
}
else if (0 != (addr & 0x3))
fprintf (stderr,
"Unaligned full word read from 0x%" PRIXADDR " ignored\n",
addr)
return O0;
}
else
{
unsigned long wordaddr = (unsigned long int) (addr + dewv>baseaddr);
return (uint32_t) htoml (ext_read (wordaddr, Oxffffffff));
}
} [+ generic_read_word()=*/

Note: The effective address (EA) for other jump instructions (d.gbnf, | .jal etc.) is not
calculated from the content of any GPR. It is calculated faomimmediate value which is shifted
right 2 bits (word aligned) before calculating an EA. Henttese instructions always generate a
word aligned access.

Results

As seen in Figured.2q, the instructionl .jalr (0x4855 261d) is sent to the ISS when re-
guesting an instruction from address 0x2f32_7c50. Theuosbn uses the content of GPR rB[4]
(Ox0000_0441) as an EA for the jump. After the execution @f thstruction the PC address for
the delay slot instruction is PC + 4 (0x2f32_7c¢54). The aslglaf the next instruction to be ex-
ecuted after the delay slot instruction is 0x0000_0441 (EAe link register (GPR r9) is set to
0x2f32_7c58. Itis the address of the instruction after tlaylslot instruction. The ISS then makes
an upcall generic_read_wor d) to fetch the next instruction to be executed in the delay Slbe
given transcript shows that the next instruction sent tol8f (at time 1645 ns) is a “load byte
signed” (.1 bs) instruction (0x9081_7049). After the execution of thistmction in the delay
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slot, the next instruction is fetched from 0x0000 0441 (Pi®js results in an unaligned address
access. As discussed earlier, the upaghéri c_read_word) returns zero in response to an un-
aligned address access that is actually the instruttipn The next PC address for the delay slot
of this new jump instruction is PC + 4 (0x00000441 + 4 = 0x0QB@). As the new calculated
PC is again an unaligned address, it will result in anothemgjunstruction generated by the upcall
(generic_read_word). This new jump instruction will again generate an unal@yfC address
(PC + 4 = 0x00000449) for its delay slot instruction. Thisgaia an unaligned address and it will
result in another jump instruction. This never-ending lobgalculating the unaligned PC address
and generation of the jump instruction by the upceéingri c_read_wor d) never stops. Conse-
qguently, the ISS never generates the upcall needed to fatelwanstruction from the test bench.
This can be seen from the received ISS status after sendérigdtnuction . | bs (0x9081_7049) at
time 1645 ns. The status shows that the virtual sequeNc8EQENCR) sent the delay slot instruc-
tion| .| bs to the ISS. However, the status returned from the ISS shoatstttvas the instruction

| .j (OxO000_0000) instead of the instructibnl bs. It is because of the instructidn j al r which
jumped to an unaligned address (0x0000_0441). Furtheyrhbkanged time (1645 ns) confirms
that the ISS is stuck in a never-ending loop.

# insn_to_insn type 1615 : ISS status start

# Insn to ISS :: L_JALR = 485526ld : B[ 4] = 00000441

# GPR([0] == 00000000 : GPR[1l] == 00002Zb3e : GPR[Z] == 0000012Zb : GPR[3] == 00000000

# GPE([4] == 00000441 : GPR[S] == 00000000 : GPR[6] == 000078de : GPR[T7] == 00004101

# GPE[8] == 0000bSeb : GPR[9] == 2f327c58 . GPR[10] == 0000d0Za : GPR[11] == Oble0000

# GPRE[1Z] == 00001lzhd : GPR[13] == 00000000 : GPR[14] == 00000000 : GPR[1S5] == 00000000

# GPE[16] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00006Zsb : GPR[19] == O00O0bLEff

# GPR([20] == 00000000 : GPR[Z21] == 0000ed51 : GPR[ZZ] == 00000000 : GPR[23] == 0000LTEE

# GPRE[24] == Za340000 : GPR[Z25] == 0000LYEE : GPR[26] == 0000cc?d : GPR[ZV] == 000037a5

# GPR([28] == 00002fhf : GPR[Z9] == 00000000 : GPR[30] == 00000000 : GPR[31] == 00000000

# SR == 00008401 : EPCR == 00000000 . EEAR == 00000000 : ESR == 0000ga01

#F == 0 O =1 v == 0

# PC == 2f327chd

# insn_ to insn type 1615 : ISS status end

#

# create_randsequence

# ¥_SEQENCR 1e45: insn sent to 1ss = 90817049

#

# insn_to insn type 1645 : ISS status start

# Insn to ISS :: L_J = 00000000 : EA (k + pc) = 00000445

# GPE([0] == 00000000 : GPR[1l] == 00002b3e : GPR[Z] == 000001Z2Zb : GPR[3] == 00000000

# GOPRE[4] == ffffffdec : GPR[5] == 00000000 : GPR[6] == 00007846 : GPR[7] == 00004101

# GPRE[8] == 0000kEeb : GPR[9] == 2f327cS8 . GPR[10] == 0000d0Z2Za : GPR[11] == Oble0000

# GPE[1Z2] == 00001l=hk0 : GPR[13] == 00000000 : GPR[14] == 00000000 : GPR[1S] == 00000000

# GPR([1e] == 00000000 : GPR[1Y] == 00000000 : GPR[18] == 000062zb : GPR[19] == O000LEff

# GPE[Z0] == 00000000 : GPR[Z1] == 0000ed51 : GPR[ZZ] == 00000000 : GPR[Z23] == O00O0LTEE

# GPRE[24] == 22340000 : GPR[2E] == 0000bYEf : GPR[Z26] == 0000cc?4 : GPR[27] == 000087a5

# GPR[28] == 00009fhf : GPR[Z9] == 00000000 : GPR[30] == 00000000 : GPR[31] == 00000000

# SR == 00008401 : EPCR == 00000000 : EEAR == 00000000 : ESR == 00008001

# F == 10 ¢ OF =1 C OV == 10

# PC == 00000445

# insn_to_insn type 1645 : IS5 status end

Figure 5.26 Problem withl . jal r andl . jr in the ISS.

Conclusion

For a simple test, in addition to the instructidng al r andl . j r, we generated the instructions
(I.ori andl.andi) with word aligned immediate values to get a world alignedteat of all
GPRs. The coverage results of this test (Figar€ 1)) shows that both instructions .(j al r and
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| .jr) work correctly in the OR1200 core when using aligned ac®sk should be noted that the
OR1200 core never generates unaligned accesses to theciimstrmemory. It uses 30 MSBs of
the PC register to fetch a new instruction thus the addreslsvisys a word aligned. Hence, in the
presence of the discrepancy we discussed with the insingdti j r andl . jal r it is not possible
to include them in the main verification test of the OR120Gecor

*|Name |Coverage |Goal |% of Goal |Status |
=gl for1200_th_topfmwec_coverage_model

+- 8 TYPE cov_pc 100.0% 100 1000w
_i_r--j TYPE cov_dut_instruction_tatal 100.0% 100 100.0% [
_i_r--j TYPE cov_iss_instruction_total 100.0% 100 100.0% [
_iJ-j TYPE cov_dut_instruction_type 33.6% 100 33.6% [
- cvP cov_dut_instruction_type:dut_insn  B.4% 100 6.4% 1

-|B] illegal_bin illegal o - -
-B] hin ORI 1136535 1 11385600... M
-B] bin &MDI 151630 1 15153000... M
-B] bin JR 18937 1 1593700.... (M
-B] bin JALR 18662 1 1666200.... (NN
=}-m TYPE cov_iss_instruction_type 4% 100 G.49% 1
Sl CvP cov_iss_instruction_type:iss_insn  B.4% 100 G.49% 1]

-|B] illegal_bin illegal o - -
- B] hin CRI 113655 1 11365600... DD
- B] bin AMDI 151691 1 151531 00... R
B bin JR 18937 1 1893700.... D
-[B] bin J&LR 18862 1 1586200.... (NN

Figure 5.27 Verification coverage results bf jal r andl . jr.

5.6.3 Add Immediate Signed and Carry (l.addic) Instruction

A sign extended immediate value is added to the content of APRhe carry flag (SR[CY]) is
also added and finally the result is stored into GPR rD.

l.addic
3t[.[.[.].T26]25].[.T.T2aJ20] .. 7. Ta6fas[ . T.T.T.T.T.T.T.T.T.T.T.T.
Opcode 0x28 D A Immediate
6 bits 5 bits 5 bits 16 hbits

.Jo

Problem Discussion

The instructionl . addi ¢ is not implemented in the ISS. It generates an illegal exoeptwvhen
executing this instruction, as shown in FiguteZg.

2The next instruction is fetched from the exception vectaO@0_0700).
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# insn_to_ insn type 145 : IS5 status start

# Insn to ISS ;@ L_ADDIC = a386f921 : ¢D([28] = 00000000 : ca[6] = 00000000 : Immed = £EE£££92
# GPE([0] == 00000000 : GPRE[1l] == 00000000 : GPR[Z] == 00000000 : GPR[3] == 00000000
# GPRE([4] == 00000000 : GPR[S] == 00000000 : GPR[6] == 00000000 : GPR[T] == 00000000
# GPE([8] == 00000000 : GPR[9] == 00000000 : GPR[10] == 00000000 : GPR[11] == 00000000
# GPRE[1Z2] == 00000000 : GPR[13] == 00000000 : GPR[14] == 00000000 : GPR[15] == 00000000
# GPE([1e] == 00000000 . GPR[17] == 00000000 : GPR[18] == 00000000 : GPR[18] == 00000000
# GPE[Z0] == 00000000 : GPR[Z1] == 00000000 : GPR[ZZ] == 00000000 : GPR[Z23] == 00000000
# GPRE[24] == 00000000 : GPR[25] == f£££4695 . GPR[26] == ffffefad : GPR[27] == 00000000
# GPE[ZE] == 00000000 : GPR[Z9] == 00000000 : GPR[30] == 00000000 : GPR[31] == 00000000
# SR == 00008001 : EPCR == 0000010z : EEAR == 0000010c : ESR == 0o0oga0l
# F == 0 ¢ OF == 0 C OV == 0

# PG == 00000700

# Insn_to_insn_ type 145 . IS5 status end

Figure 5.28Instructionl . addi ¢ generates an illegal exception at the ISS.

Conclusion

Since the instructioh. addi ¢ is not implemented in the ISS (golden model), we have to ebeciti
from the exhaustive verification of the OR1200 core. Theimsion is implemented in the OR1200
core but its correctness is not proven because it is notdedun the exhaustive verification test.
Since the carry flag is not controlled by the freeze logic @R 1200 core (see Subsecti®n.3),
this problem should also be considered for the instrudtiaudi c. Figure .29 shows a correctly
working example of the instruction. addi ¢ on the OR1200 core. At time 195 ns, the instruction
| . addi ¢ (Oxa386_f921) is in the execution stage (insn). The destination register is rD[28],
register operand one is rA[6] (0x0000_0000) and the immedialue is Oxffff_f921. Thearry flag
is zero at the time this instruction executes. After the aten of this instruction the correct result
(Oxffff_f921) is stored into the destination register rBJ2at time 225 ns. At time 225 ns another
instruction! . addi ¢ (Oxa3dc_5381) is in the execution stage. The destinatigistes is rD[30],
register operand one is rA[28] (0xffff_f921) and the imnadiviaue is 0x0000_5381. Tlearry
flag is zero. After the execution of this instruction the eotrresult (0x0000_4ca?2) is stored into
the destination register rD[30] at time 255 ns. They flag is correctly set.

Since the instruction . addi ¢ is not implemented in the ISS, it is excluded from the main
verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instruction . addi c. This means that the compiler does not either implemeniribtsuction or
often generate it. This is the reason why this error stayedentified before. However, the OR32
assembler could assemble code that uses this instruction.
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5.6.4 Load Single Word and Extend with Sign (l.lws) Instructon

A sign extended immediate value is added to the content of @P® calculate the effective
address (EA). A word in the memory is addressed and loadedaRR rD using this EA.

l.lws
i . [.[.[.J26]25] . [.[.J2af2o [ . J.J.Taef[as[.[.[.[.[.T.[.T.[.T.T.T.T.T.To
Opcode 0x22 D A Immediate
6 bits 5 bits 5 bits 16 hits

ISS implementation ofl . | ws

The ISS implementation shows that the instructiohws is an invalid instruction which is not
implemented in the ISS so far. Whenever this instructiorerg o the ISS, it generates an illegal
exception. Figured.3(q shows that when the instructidn | ws (0x88f7_dbfa) was sent to the ISS,
it generated an illegal exception (the next instructioretstied from 0x0000_0700).

insn to_insn type 265 : IS5 status start

#

# Insn to ISS :: L_LWS = 88f7dbfa : cD[ 7] = 00000000 : cA[23] = 00000000 : Immed = £E££dbfa
# GPR[0O] == 00000000 : GPR[1] == 00000000 : GPR[Z] == 00000000 : GPE[3] == 00000000
# GPR[4] == 00000000 : GPR[S] == 00000000 : GPR[6] == 00000000 : GPE[7] == 00000000
# GPR[8] == 00000000 : GPR[9] == 00000000 : GPR[10] == 00000000 : GPE[11] == 00000000
# GPR[1Z] == 00000000 : GPR[13] == 00000000 : GPR[14] == 00000000 : GPE([15] == 00001aSf
# GPR[1le] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00000000 : GPE([19] == 00000000
# GPR[Z20] == 00000000 : GPR[Z21] == 00000000 : GPR[ZZ] == 00000000 : GPR[Z23] == 00000000
# GPR[24] == 00000000 : GPR[25] == 00000000 : GPR[Z6] == 00000000 : GPRE[Z7Y] == 000091ab
# GPR[ZB] == £ff£f921 : GPR[Z9] == 00000000 : GPR[30] == 00004cal : GPRE([31] == 00000000
# SE == 00008201 : EPCR == 0000011c : EEAR == 0000011c : ESRE == 00008201
#F =1 o OF == 0 : 0¥ == 10

# PG == 00000700

B insn to insn type 265 : IS5 status end

Figure 5.30Instructionl . | ws generates an illegal exception at the ISS.

OR21200 implementation ofl . | ws

The instruction . | ws is not implemented in the OR1200 core. Therefore, whenéversent to
the OR1200 core, it generates an illegal instruction exaepT he waveform in Figures. 31] shows
that the instruction . | ws (0x88f7_dbfa) is in the execution stage at time 315 ns in tRLZDO
core. Theexcept_illegal signal is high which indicates that an illegal instructisrin the execution
stage. Anillegal exception results in accessing the natituotion from the illegal_exception vector
(Ox0000_0700). The instruction | ws is a load instruction and supposed to be executed on the
LSU. However, since it is not implemented in the OR1200 citrelsu_op (LSU opcode) is a NOP
at time 315 ns.

Conclusion

The instructionl . | ws is neither implemented in the ISS nor in the OR1200 core. Itirgs to
the ORBIS32-1 instruction class of the OpenRISC1000 aechitre and all instructions belonging
to this class are compulsory to implemeaf]. This instruction cannot be included in the main
verification test of the OR1200 core.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instructionl . | ws. This means that the compiler does not either implementitisisuction or
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often generate it. This is the reason why this error stayedentified before. However, the OR32
assembler could assemble code that uses this instruction.
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5.6.5 MAC Read and Clear (l.macrc) Instruction

The instruction . macr ¢ is used for the MAC unit synchronization. When all instraos in the
MAC unit’s pipeline are completed, the content of the MAC woalator (MACHI, MACLO) is
stored into GPR rD and the accumulator is cleared.

l.macrc
3. [.1.1.126[25].1.[.Jot[20 . [.Ja7[s6 . ... .. 1.1.1..
Opcode0x6 D Reserved Opcode 0x1M000
6 bits 5 bits 4 bits 17bits

[LI.I.T.].]o

ISS implementation ofl . macr c

The ISS implementation of the instructibnmacr ¢ is given below. It shows that the values in the
registers MACHI and MACLO are stored in a long variable (6g8-twhich is then shifted right 28
times. This shifting is a problem since there is no reasoretfopm it.

[% xxkkxxxxx  @XECYEN . @xxxkkkkxx [

case Ox1:
[+ Not unique: real mask fffffffffcO1ffff and current mask fidD00 differ — do
final check =/
if ((insn & OxfcOl1ffff) == 0x18010000) {
/= Instruction: |.macrc =/

{
uorreg_t a;
/+ Number of operands: 1x/
a = (insn >> 21) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
{ [+ "l_macrc" =/
uorreg_t lo, hi;
LONGEST |
/* No need for synchronization here— all MAC instructions are 1 cycle long.
*/
lo cpu_state.sprs [SPR_MACLO];
hi cpu_state.sprs[SPR_MACHI];
| = (ULONGEST) lo | ((LONGEST)hi << 32);
| >>= 28,;
/I PRINTF ("<%08x>\n", (unsigned long)l);
SET PARAMO((orreg_t)!l);
cpu_state.sprs[SPR_MACLO]
cpu_state.sprs [SPR_MACHI]

0;
0;

#undef SET_PARAM
#undef PARAMO

if (do_stats) {
current—>insn_index = 6; /[ "l.macrc" =/
analysis(current);

cpu_state.reg[0] = 0;/* Repair in case we changed it/

} else {
/[« Invalid insn %/

|_invalid ();
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if (do_stats) {

current—>insn_index =-1; [ "22?" x|/
analysis(current)
}
cpu_state.reg[0] = 0;/* Repair in case we changed it/
}
}
break;
}
break;

Figure b.39 shows that the instructioh. macrc (0x1943_0000) is sent to the ISS and the
destination register is rD[10]. By the time this instruatics executed, the register MACHI is
0x0000_0000 and the register MACLO is 0x68ad_f2f9. Aftes #xecution of this instruction
the destination register rD[10] is 0x0000_0006 while therect result is 0x68ad_f2f9. This is an
implementation fault since the result is shifted right Z8ds.

# mwvc_monitor o E35: MACLO = e8adf2f9 . MACHI = 00000000

#

# 1insn_to insn type 565 : IS5 status start

# Insn to ISS :: L_MACR = 19430000 : £D[10] = 00000006

# GPR[0] == 00000000 : GPR[1] == 00002h3e : GPR[Z] == 000035ea : GPR[3] == 00000000
# GPR[4] == 00000000 : GPR[S] == 00000000 : GPR[&] == 00007346 . GPR[Y] == 0000d3Zc
# GPR[H] == OD00DOTETE : GPR[Y] == 00000000 : GPR[10] == 00000006 : GPR[11l] == 00000000
# GPR[1Z2] == 00000000 : GPR[13] == 000072b3 : GPR[14] == 00000000 . GPR[1S] == 00000000
# GPR[16] == 00000000 : GPR[17] == 00000000 : GPR[18] == 00000000 . GPR[19] == 00000000
# GPR[Z0] == 00000000 : GPR[Z21] == 00000000 : GPR[2Z] == 00000000 . GPR[23] == 00000000
# GPR[24] == 00000000 : GPR[25] == 00000000 : GPR[Z26] == 0000923 . GPR[ZT] == 00000000
# GPR[Z8] == 0000f921 : GPR[Z29] == 00000000 : GPR[30] == 0000fhal : GPR[31] == 00000000
# SR == 00008001 : EPCE == 00000000 : EEAR == 00000000 : ESR == 00008001
# F == 0 ¢ OF == 10 c Ov == 0

# PC == 00000143

# insn_to_insn type EEL . ISS status end

Figure 5.32Execution results df. macr ¢ on the ISS.

The same instructioh. macrc (0x1943_0000) is correctly executed on the OpenRISC1200
core. Figure $.33 shows the mismatch between the wrong result from the |SSammirect result
from the OR1200 core.

Conclusion

The instructionl . macr ¢ is not working correctly in the golden model (ISS), therefdris ex-
cluded from the main verification test of the OR1200 core. ifis&ruction is working correctly in
the OR1200 core as it generated a correct result. Howesampitectness is not proven because it
is not included in the exhaustive verification test.

Several benchmark programs were compiled using OR32 C/Gmpiter but it did not generate
the instructionl . macr c. This means that the compiler does not either implementirisitsuction
or often use it. This is the reason why this error stayed unified before. However, the OR32
assembler could assemble code that uses this instruction.
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# insn_to_insn type 635 . DUT status start

# Insn to DUT :: L_MACRC = 18430000 : ¢0[10] = 00000000

# GPR[O] == 00000000 : GPR[1] == 0000Z2b3e : GPR[Z] == 000035e= : GPR[3] == 00000000
# GPR[4] == 00000000 : GPR[S] == 00000000 . GPR[6] == 000073de : GPR[T] == 0000d32c
# GPR[8] == 00007E£7€ . GPR[Y] == 00000000 : GPR[10] == 00000000 . GPR[11] == 00000000
# GPR[1Z] == 00000000 : GPR[13] == 00007Eh3 . GPR[14] == 00000000 . GPR[15] == 00000000
# GPR[16] == 00000000 : GPR[17] == 00000000 . GPR[18] == 00000000 . GPR[19] == 00000000
# GPR[20] == 00000000 : GPR[21] == 00000000 . GPR[ZZ] == 00000000 . GPR[Z23] == 00000000
# GPR[24] == 00000000 : GPR[25] == 00000000 : GPR[Z6] == 0000923 . GPR[ZTY] == 00000000
# GPR[Z8] == 0000£321 : GPR[29] == 00000000 . GPR[30] == 0000fhal . GPR[31] == 00000000
# SR == 00002001 : EPCR == 00000000 : EEAR == 00000000 : ESR == (0008001
# F == 10 ¢ OF == 0 C OV == 0

# PC == (00000150

# insn_to_insn type B35 . DUT status end

#

+Fatal: MVC _MONITOR: 645 : compare_gpr FAILED: iss_gpr[10] = 00000006: dut gpr([10] = 6BadfZfd
Time: 645 ns  Scope: orlZ00 th top. mwec monitor. compace gpr

*Note: &finish co A fenv Seve_orl200 Mmeve_monitor. svi(B69)

Time: B45 ns TIteration: 2 Instance: SorlZ00 th top/mwc monitor::run

Figure 5.33Results mismatch df. macr ¢ from the OR1200 core and the ISS.

5.6.6 Rotate Right (l.ror) Instruction

The contents of GPR rA are rotated right by the number of Bttiums specified by GPR rB. The
result is then placed into GPR rD.

l.ror
31| . ... J]26[25].].].J21]20].].[.Jae[as].].].]11 10 9] . [.[]e[ 5 [4a]3].].]0
Opcode 0x38 D A B Reserved Opcode 0x3 | Reserved | Opcode 0x8
6 bits 5 bits 5 bits 5 bits 1 bits 4 bits 4 bits 4 bits

Problem Discussion

The instruction . ror is not implemented in the ISS that is why it results in an gllegxception.
The instruction is implemented in the OR1200 core and wagrkiorrectly. When this instruction
was implemented in the OR1200 core, the OR32 C/C++ compitEnot generate rotate instruc-
tions. However, the OR32 assembler could assemble codedéstotate instructions. It means that
rotate instructions must be inserted manually. By defddtimplementation of rotate instructions
is disabled in the OR1200 core to save area and to increasgatiefrequency 12]. A simula-
tion of the instructiorl . ror is shown in Figure$.34 to show that it is working correctly in the
OR1200 core. The waveform shows that the instructionor (0xel143_f0e8) is in the execution
stage €éx_insn) at time 13265 ns. The destination register is rD[10], tegisperand one is rA[3]
(Ox0000_f7dd) and register operand two is rB[30] (0x00@h7. Operand ‘a’ (rA[3]) is rotated
right by the number of bit positions specified in operand HB[80]). At time 13265 ns the correct
result (0x0lef ba0O0) is calculated and the destinatioisteag(rD[10]) is finally updated at time
13295 ns.

Conclusion

The instructior . r or is not implemented in the golden model (ISS), thereforeexiduded from
the main verification test of the OR1200 core. The instructsoworking correctly in the OR1200
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core as it generated a correct result. However, its comesstis not proven because it is not included
in the exhaustive verification test.

Since the OR32 C/C++ compiler does not generate rotataigigins, the instructioh. r or is
not often used. This is the reason why this error stayed utifoel before.
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Figure 5.34Simulation results off. r or on the OR1200 core.
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5.6.7 Rotate Right with Immediate (l.rori) Instruction

The contents of GPR rA is rotated right by the number of bititpmss specified by a 5-bit imme-
diate value (L). The result is then placed into GPR rD.

|.rori
3ai[ . [.[.].]26]25].].].[21J2o[ . J.].JTaeJas[.J.T.T.T.1T.18] 7 ] 6 [5].].].].]0
Opcode 0x2e D A Re=erved Opcode 0x3 L
6 bits 5 bits 5 bits 8 bits 2 bits 6 bits

Problem Discussion

The instruction . rori is not implemented in the ISS that is why it results in an dllegxception.
The instruction is implemented in the OR1200 core and warlkiarrectly. A simulation of the
instruction! . rori is shown in Figure$.35 to show that it is correctly working in the OR1200
core. When the instruction is rori, operand ‘b’ is a 16-bit immediate value and its last 5 bits
contain the value by which operand ‘a’ is rotated right. Treveform shows that the instruction
| .rori (Oxbbdc_edfd) is in the execution stage (insn) at time 225 ns. The destination register
is rD[30], register operand one is rA[28] (Oxffff_f921) atlde immediate value = 0x0000_001d
(L) (last 5 bits of a 16-bit immediate value i.e., 0x0000 dddf Operand ‘a’ (rA[28]) is rotated
right by the number of bit positions specified by operand b’ @At time 225 ns, the correct result
(Oxffff_c90f) is calculated and then stored into the destion register (rD[30]) at time 255 ns.

Conclusion

The instructionl . rori is not implemented in the golden model (ISS), therefore #xsluded
from the main verification test of the OR1200 core. The irdtom is working correctly in the
OR1200 core as it generated a correct result. However, litsatoess is not proven because it is not
included in the exhaustive verification test.

Since the OR32 C/C++ compiler does not generate rotateugtigins, the instructiof. rori
is not often used. This is the reason why this error stayedemtified before.
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Figure 5.35Simulation results off. rori on the OR1200 core.
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5.6.8 Move to/from Special Purpose Registers (l.mtspr/l.fapr)

The content of GPR rB is moved into an SPR defined by the confeBPR rA logically ORed
with an immediate value.

|.mtspr
3ar]. [.].].J26[25].[.J.J21J20] . J.J.JaeJas[.[.J.JTmaJao] . JT.T.T.T.T.T.T.T.To
Opcode 0x30 K A B K
6 bits 5 bits 5 bits 5 bits 11 bits

Problem Discussion

The ISS implementation of the instructibnnt spr (Appendix A.4) shows that the destination
SPR is not defined according to the instruction’s descriptibis defined by the content of operand
‘a’ added to operand ‘c’ (immediate value) instead of lolijc®@Red. Hence, this implementation
differs from thel . nt spr implementation in the OR1200 core where the destination iSiERfined
by the content of GPR rA logically ORed with an immediate ealThe instruction Move From
Special Purpose Registefl . nf spr) has the same implementation difference between the ISS and
the OR1200 core.

Conclusion

The implementation of the instructiohsnt spr andl . nf spr is different from the specification
in the OpenRISC1000 architectural manual]] However, the OR1200 core implements both
instructions according to their specification in the mant#nce, in presence of this difference, it
is not possible to include these instructions in the maiifigation test of the OR1200 core.

5.7 The OpenRISC1200 Verification Coverage Results

5.7.1 Overview

This section presents the verification completeness (agegrof the OR1200 core. It should be
noted that all instructions and scenarios which have a prmoldither in the golden model (ISS) or
in the OR1200 core (DUV) are not included in this verification

5.7.2 OR1200 Functional Verification Coverage

Figure .36 shows the achieved verification coverage of the OR1200Q ddre verification envi-
ronment is discussed in the Sectigh4). This coverage is the maximum we could achieve without
generating the erroneous instructions (either in the OBRt2@e or in its ISS). Table&[ 1] shows the
OR1200 instruction set, the erroneous instructions aterdifit instruction formats. The description
about each coverage group in the coverage manlel Cover age_nodel ) is given below.

Program Counter Coverage

The coverage groupov_pc shows the achieved coverage of the PC register of the ORX#@0 ¢
It also covers whether an illegal address is accessed dilmngeriod of simulation.
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OR1200 Instruction Set

Erroneous Instructiong

Instruction Formats

l.addi, l.addc, L.lwz, l.sw, L.j, l.addc, Ljr, (A) LinsnrD, rA, rB
l.jal, L.bf, L.bnf, l.rfe, l.andi, l.jalr, l.addic, (B) linsn rA, 1B
l.ori, I.nop, l.sfeq, I.sfne, l.add,| l.div, l.divu, (C) LinsnrD, rA, |

l.addic, I.cmov, l.div, l.extbs,
l.mac, I.mul, L.sll, I.mfspr,

l.extbs, l.extbz,
l.exths, l.exthz,

Immediate— 16 bits ([15:0])
(D) Linsn rA, |

l.mtspr, l.and, l.csync, l.divu, l.mfspr, Immediate— 16 bits ([15:0])
l.extbz, l.exths, l.exthz, I.ff1, l.mtspr, l.lws, (E) Linsn I (rA), 1B

Ljalr, Ljr, Llbs, LIbz, Llhs, L.Ihz, | Lror, Lrori, Immediate— 16 bits ([25:21]+[10:0])
l.lws, l.maci, l.macrc, .Lmovhi, | l.muli, l.mulu, (F) LinsnrD, rA, L

l.msb, .msync, [.muli, .mulu,
l.or, l.psync, l.ror, l.rori, l.sb,
|.sfeqi, I.sfges, I.sfgesi, l.sfgeu
I.sfgeui, |.sfgts, I.sfgtsi, I.sfgtu,

l.maci, l.macrc,

I.fl1

Immediate— 6 bits ([5:0])

(G) Linsn N

EA+ 26 bits ([25:0])

(H) Linsn rD, K (16 bits— [15:0])

I.sfgtui, I.sfles, I.sflesi, I.sfleu, (I) Linsn rD, rA
I.sfleui, I.sflts, 1.sfltsi, 1.sfltu, (J) LinsnrB
I.sfltui, I.sfnei, l.sh, L.slli, l.sra, (K) L.insn rD
l.srai, l.srl, l.srli, I.sub, 1.xor, (L) Linsn rB, |

l.xori, 1.f11[11] Immediate— 16 bits ([25:21]+[10:0])

Table 5.10R1200 instruction set.

Total Executed Instructions Coverage

The coverage grougpov_dut_instruction_total  covers the total number of instructions executed
on the OR1200 core. The coverage graep_iss_instruction_total  covers the total number of
instructions executed on the ISS and it should be equal tadhes coverage. All erroneous in-
structions are excluded in both coverage groups.

Instruction Specific Coverage

The coverage groupov_dut_instruction_type  provides instruction specific verification statis-
tics. It comprises of a number of coverage points which gtewva statistical details of different
aspects that are required to be verified (see Sedtibrd). There are some coverage points needed
for the cross coverage nameligst reg, src_1 reg, src_2 reg, Immed_6_bits, Immed_16_bits,
Immed_16_bits_dist, Immed_26_bits, cover_carry, cover_carry_delay, cover_flag, cover_flag_delay,
cover_ov_flag, cover_ov_flag_delay, stage_1 insn, stage_2_insn, stage_3_insn, stage_4_insn.

Other coverage points are individually described below.

dut _i nsn: This coverage point stores the histogram of all instrustiexecuted on the OR1200
core. In total there are 78 instructions in the OR1200 imsiba set. Only 58 could be
included in the verification test because the rest have gnabl(see Tablg.1). The reports
about the erroneous instructions are provided in Sectid) &nd Section.6).

Equation 6.1) shows the maximum achievable verification coverage fartbverage point.

: . 58
Maximum possible coverage %* 100 = 74.3% (5.1)

Figure .36 shows that the maximum possible coverage is achieved.
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cross_insn_X rD rA rB: This coverage point provides verification coverage stesidor
instructions of format (A) in Tables(1). The coverage point shows that all tested instructions
correctly write to and read from all 32 GPRs (as their regigperands). This coverage point
is basically a cross coverage between the following cowepmints:dut _i nsn, dest _reg,
src_1 reg andsrc_2 reg. There are 17 instructions of format (A) in the OR1200 instru
tion set while six of them are erroneous. Equatiér?( shows the maximum achievable
verification coverage for this coverage point.

. . 11
Maximum possible coverage " 100 = 64.7% (5.2)

Figure .36 shows that 93% of the maximum possible coverage is achieseate the test

space is quite large, it takes very long simulation time toiea@ 100% maximum possible
coverage. One possible solution was to write a directedaiestgenerate instructions of
format (B) only. We did achieve 100% coverage from this deddest.

cross_insn_X rA rB: This coverage point provides verification coverage stesisor in-
structions of format (B) in Table5(1). The coverage point shows that all these instructions
correctly write to and read from all GPRs (as their registggrands). This coverage point
is basically a cross coverage between the following cowepamints:dut _insn, src_1 reg
andsrc_2_reg. Figure p.36 shows that 100% coverage is achieved.

cross_insn_X rD rA I mmedl16: This coverage point provides verification coverage statis-
tics for instructions of format (C) in Tablé(1). The coverage point shows that all tested
instructions use a valid 16 bits immediate value and cdyregtite to and read from all
GPRs (as their register operands). This coverage poinsisdily a cross coverage between
the following coverage pointsdut _i nsn, dest _reg, src_1 reg andl nmed_16 _bits. In
total there are 13 instructions of format (C) in the OR12(0rirction set while four of them
are erroneous. Equatiof.B) shows the maximum achievable verification coverage far thi
coverage point.

: . 9
Maximum possible coverage 1_3* 100 = 69.2% (5.3)

Figure .36 shows that the maximum possible coverage is achieved.

cross_insn_X rA I nmedl16: This coverage point provides verification coverage stesist
for instructions of format (D) in Table>(1). This coverage point is a cross coverage between
the following coverage pointsdut _i nsn, src_1 reg andl nmed_16_bits. Figure b.36
shows that 100% coverage is achieved.

cross_insn_X rA rB_ I nmedl6_di st: This coverage point provides verification cover-
age statistics for instructions of format (E) in Tabtelj. This coverage point is basically
a cross coverage between the following coverage podhis:i nsn, dest _reg, src_1 reg
and|lmed_16 bits dist. There are four instructions of format (E) while one of them
is erroneous. Equatiorb @) shows the maximum achievable verification coverage fa thi
coverage point.

. . 3
Maximum possible coverage 2t 100 = 75% (5.4)
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Figure .36 shows that the maximum possible coverage is successftiigeed.

cross_insn_X rD rA | nmed6: This coverage point provides verification coverage statis-
tics for instructions of format (F) in Tablé(1). It is basically a cross coverage between the
following coverage pointsdut _i nsn, dest _reg, src_1 reg andlmred_6 bits. There
are four instructions of format (F) while one of them is erons. Equation5) shows the
maximum achievable verification coverage for this coveragat.

Maximum possible coverage g* 100 = 75% (5.5)

Figure .36 shows that the maximum possible coverage is achieved.

cross_insn_X_ | nmmed26: This coverage point provides verification coverage stesisor in-
structions of format (G) in Tablés(1). It is basically a cross coverage between the following
coverage pointsdut _i nsn andl nmed_26_bits. Figure b.39 shows that 100% coverage
is achieved.

cross_insn_X rD I nmedl16: This coverage point provides verification coverage stesist
for instructions of format (H) in Table5(1). It is basically a cross coverage between the
following coverage pointsdut i nsn, dest _reg andl mmed_16_bi ts. Figure .36 shows
that 100% coverage is achieved.

cross_insn_X rD rA: This coverage point provides verification coverage stesidor in-
structions of format (1) in TableX(1). There are four instructions of format (I) and all of
them are erroneous. Figure.Bq shows that 0% coverage is achieved.

cross_insn_X rB: This coverage point provides verification coverage stesisor instruc-
tions of format (J) in TableH.1). There are two instructions of format (J) and both are
erroneous. Figures[364 shows that 0% coverage is achieved.

cross_insn_X rD: This coverage point provides verification coverage stesisor instruc-
tions of format (K) in Table %.1). There is only one instruction of format (K) and it is
erroneous. Figures[34 shows that 0% coverage is achieved.

cross_insn_X rB I med16_di st: This coverage point provides the verification coverage
statistics for the instructions of format (L) in Tablg.{). There is only one instruction of
format (L) and it is erroneous. Figurg.Bg shows that 0% coverage is achieved.

cross_insn_X carry_carrydel ay: This coverage point stores the histogram of all in-
structions that can drive the carry flag (CY). It verifies thhthese instructions correctly set
and reset the carry flag. There are ten such instruction®wshilof them are erroneous. Itis
basically a cross coverage between the following coverageg dut i nsn, cover _carry
andcover _carry_del ay. Equation §.6) shows the maximum achievable verification cov-
erage for this coverage point.

: , 4
Maximum possible coverage ﬂ)* 100 = 40% (5.6)

Figure .36 shows that the maximum possible coverage is achieved.
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cross_insn_X flag flagdel ay: This coverage point stores the histogram of all instruc-
tions that can drive the branch flag (F). It verifies that adisé instructions correctly set
and reset this flag. It is basically a cross coverage betwesifiotlowing coverage points:
dut _insn, cover _flag andcover _flag_del ay. Figure p.36 shows that 100% coverage
is achieved.

cross_insn_X ovflag _ovfl agdel ay: This coverage point stores the histogram of all in-
structions that can drive the overflow flag (OV). It verifieatthll these instructions correctly
set and reset this flag. It is basically a cross coverage leetiye following coverage points:
dut i nsn, cover_ov_flag andcover _ov_flag_del ay. There are ten such instructions
while six of them are erroneous. It means that the total nurabeombinations is 40. The
combinations for one instruction are given below.

l.insn, ov_low, ov_low
l.insn, ov_low, ov_high
l.insn, ov_high, ov_low

P 0 Dp PR

l.insn, ov_high, ov_high

Since four instructions are working correctly, 16 comhinraé can be covered at maximum.
However, as discussed in Subsectiérb(9, the overflow flag is not correctly implemented
in the OR1200 core. Therefore, only four combinations candvered (OV flag stays low).
Equation £.7) shows the maximum achievable verification coverage fartbverage point.

Maximum possible coverage %* 100 = 10% (5.7)

Figure .39 cross verifies the calculated verification coverage.

cross_cov_insn_3_stage: This coverage stores the histogram of three instructiorthén
OR1200 pipeline (in contiguous stages) to account the dkgrernies between instructions.
It is basically a cross coverage between the following cagerpoints:stage 1 insn,
stage 2 insn andstage_3 insn. As there are total 78 instructions in total, the overall
number of combinations to cover is 474552. Since only 58uetibns are working cor-
rectly, the total number of correctly working combinatioas95112. Moreover, we have to
restrict the generation of jump/branch instructions inde&y slot. This constraint is rele-
vant only for the verification of the OR1200 core. The reasemitd this restriction is to stop
the generation of a sequence of instructions with two cartsecjump/branch instructions
followed by another instruction which can generate an exaeplf the delay slot instruction
generates an exception in the ISS, the EPCR is set tee BCHowever, if the jump/branch
instruction of this delay slot itself is executing in the @eklot of another jump/branch in-
struction, the value of EPCR is incorrect and nondeterrmisThis restriction excludes
1856 combinations as there are four working jump/branctrungons having a delay slot.
Equation 6.8) shows the maximum achievable verification coverage farthiverage point.

(195112- 1856)

Maximum possible coverage 274552

%100 = 40.7% (5.8)
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Figure .34 shows that 98.2% of the maximum possible coverage is aetliesince the test
space is quite large, it takes very long simulation time toexe 100% maximum possible
coverage.

Mame |Coverage|Goal[% of Goal|Status

-l for1200_tb_top/mvc_coverage_model

=+ TYPE cov_pc 100.0% 100 100.0% (DD
=+ 8 TYPE cov_dut_instruction_total 100.0% 100 100.0% (DD
=+ 8 TYPE cov_iss_instruction_total 100.0% 100 100.0% (DD
=8 TYPE cov_dut_instruction_type F11% 100 711% [
+-8 CVP cov_dut_instruction_typesdut_insn 743% 100 743% [
_Jir_,--j CVP cov_dut_instruction_type:dest_req 100.0% 100 100.0% [N
+8 CVP cov_dut_instruction_typessrc_1_reg 100.0% 100 100.0% [
_J:r_,--j CVP cov_dut_instruction_type:src_2_req 100.0% 100 100.0% [N
_-;-_r-‘ CVP cov_dut_instruction_type:immed_6G_bits 100.0% 100 100.0% (D
=+ @ CVP cov_dut_instruction_type:immed_16_bits 100.0% 100 100.0% (DD
_-;-_r-‘ CVP cov_dut_instruction_type:immed_16_hits_dist 100.0% 100 100.0% (DR
_a}_,--j CVP cov_dut_instruction_type:immed_26_hits 100.0% 100 1000% (DD
_a}_,--j CVP cov_dut_instruction_type:cover_carry 100.0% 100 100.0% (DD
_a}_,--j CVP cov_dut_instruction_type:cover_carry_delay 100.0% 100 100.0% (DD
_Jir_,--j CVP cov_dut_instruction_type:cover_flag 100.0% 100 100.0% [N
_J:r_,--j CVP cov_dut_instruction_type:cover_flag_delay 100.0% 100 100.0% [N
_,:,_,..‘ CVP cov_dut_instruction_type:cover_ov_flag 50.0% 100 50.0% B
=+ 8 CVP cov_dut_instruction_type:cover_ov_flag_delay 50.0% 100 50.0% [N |
=+ @ CVP cov_dut_instruction_type:stage_1_insn 74a3% 100 74.9% [N
=+ 8 CVP cov_dut_instruction_type:stage_2_insn 7483% 100 74.9% [
=+ 8 CVP cov_dut_instruction_type:stage_3_insn 743% 100 74.9% [N
=+ 8 CVP cov_dut_instruction_type:stage_4_insn 745% 100 74.5% [
+-8 CROSS cov_dut_instruction_type:cross_insn_¥_rD_ré_tB B0.2% 100 GO.2% (|
_J:r_.--j CROSS cov_dut_instruction_type:cross_insn_x¥_ra_rE 100.0% 100 100.0% (DD
+ 8 CROSS cov_dul_instruction_type:cross_insn_¥_rD_ré_lmmed16 B9.2% 100 69.2% [N |
_,:,_,..‘ CROSS cov_dut_instruction_type:cross_insn_¥_r&_lmmed1& 100.0% 100 100.0% (DD
_-;-_r-‘ CROSS cov_dut_instruction_type:cross_insn_¥_r&_rB_Immedi&_dist 75.0% 100 75.0% [
=+ @ CROSS cov_dut_instruction_type:cross_insn_¥_tD_ré_lmmed6 75.0% 100 75.0% (D |
_J}_,--j CROS3S3 cov_dut_instruction_type:cross_insn_¥_ImmedZ6 100.0% 100 1000% (DD
_J}_,--j CROSS cov_dut_instruction_type:cross_insn_¥_rD_Immed1 6 100.0% 100 100.0% (DD
+-8 CROSS cov_dut_instruction_type:cross_insn_¥_rD_ré 0.0% 100 0.0% 1
+8 CROSS cov_dut_instruction_type:cross_insn_¥_rB 0.0% 100 0.0% 1
+8 CROSS cov_dul_instruction_type:cross_insn_¥_rD 0.0% 100 0.0% 1
_J:r_,--j CROSS cov_dut_instruction_type:cross_insn_¥_rB_lmmed16_dist  0.0% 100 0.0% 1
_-;-_r-‘ CROSS cov_dut_instruction_type:cross_insn_¥_cary_carrydelay  40.0% 100 40.0% -
_-;-_r-‘ CROSS cov_dut_instruction_type:cross_insn_¥_flag_flagdelay 100.0% 100 100.0% (DD
_-;-_r-‘ CROSS cov_dut_instruction_type:cross_insn_¥_ovflag_ovflagdelay  10.0% 100 10.0% —1
=+ 8 CROSS cov_dut_instruction_type:cross_cov_insn_3_stage 400% 100 400% ]
+)- 8 INST Vaorl 200_th_top/mvc_coverage_model:cov_dut_instruction_type 71.1% 100 71.1% [N
+-8 TYPE cov_iss_instruction_type 74.3% 100 74.3% ]

Figure 5.36 Functional verification coverage of the OR1200 core.



Chapter

Conclusions and Future Work

6.1 Conclusions

This thesis is divided into two major parts: the first parhis implementation of a CPU Subsystem
and the second patrt is the functional verification of thissystem.

The CPU Subsystem is used in an advance control architefdunmultimode transceivers.
It operates as a central control unit of the architecturs.fdtemost function is to configure the
transceiver and its interface for a particular communicattandard. The Subsystem is comprised
of an open source OR1200 core, a triple-layer Sub-bus systememory subsystem and several
interfaces. All components comply with the Wishbone inbartection standard. The OR1200
GNU toolchain is used to generate the memory initializafiiéa for the OR1200 core and also
for an early code analysis. The simulation-based veriboatif the CPU Subsystem includes the
coverage-driven constrained random verification of the @IR1core, the Sub-bus system and the
memory subsystem. For the verification of the OR1200 corel@deg model is implemented using
the OR1200 ISS with a SystemC wrapper around to incorpdnatedrification environment. More-
over, OVM is used to implement a configurable and reusabliéication environment. This thesis
includes the co-simulation of the programming language®YH/erilog, C, C++ (SystemC), DPI
and SystemVerilog.

The verification results of the Sub-bus system and the mesy@atem show that both subsys-
tems are implemented correctly. Furthermore, the sinarati the CPU Subsystem demonstrates
that it provides the maximum possible throughput for mosthef OR1200 instructions i.e., three
clock cycles for single cycle instructions.

The verification results of the OR1200 core describe thattre has some malfunctions in-
cluding (i) erroneous instructions, (ii) unimplementedtinctions, (iii) design errors and (iv) dis-
crepancies between the specification and its implementatoreover, the OR1200 ISS (golden
model) also has some implementation errors and unimplexddnstructions. This significantly
restricts the achievable verification coverage of the OR1@f0e. There are 78 instructions in the
OR1200 instruction set but only 58 instructions could béuided in the verification test because 20
instructions are erroneous or unimplemented (either itR&200 core or in its ISS). Hence, the
single instruction verification coverage is restricted 403%6. The cross coverage of three contigu-
ous instructions to observe the dependencies betweendinedtions is restricted to 40.7%.
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6.2 Future Work

There are several improvements which could be done for a upeaétative verification of the
CPU Subsystem. Some possible improvements are listed below

1. A possible improvement could be to perform the functioralfication of the OR1200 core
after the rectification of all found malfunctions in the caired in its ISS.

2. Another possible improvement could be to perform the &raerification of the OR1200
core, the Sub-bus system and the memory system.

3. It could be possible to perform the verification of the plkerals of the OR1200 processor
such as the debug unit, the power management unit and tmeujptteontroller.

Furthermore, it could be possible to enhance the througbptite CPU Subsystem by maxi-
mizing the throughput of Wishbone interfaces of the OR1201@.c



Appendix

Appendices

A.1 Software development

A.1.1 Test application program

[x xxxxxxxxxxxx  Test application program (main. Gssssxxxsss« [

#include "Test.h"

#define SIM
#ifdef SIM
void exit_sim (void){
__asm__ __volatile__ ("l.add r3,r0,%0\n\t"
“l.nop %1": : "r" (1), "K" (0x0001));
#endif

int mem[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
static int b = 6;
int main() {

int i = 12;

if (i %5 == 0){

mem[b] = mem[b] + 5;

i += 2;
if (i % 2 == 0){
i = Mult(10);
}
#ifdef SIM
exit_sim () ;
#endif
return O;
}
I Test.h */

#ifndef TEST
#define TEST

int Mult(int a);
#endif

/% Test.c */
#include "Test.h"

149
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int Mult(int a){
if (a <= 1) return 1;
a = ax Mult(a — 1);
return a;

A.1.2 Disassembly file of the test program

[k ke ko ok ko ko ko Test. | Strxrkxkkrkrkrrkxkk /
output: file format elf32-0r32
Sections :
Ildx Name Size VVA LMA File off Algn
0 .bss 00000050 f0000000 fOOOO0O00 00002000++@
ALLOC
1 .text 000002dc 00000100 00000100 00000100++22
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
2 .data 00000040 000003dc 000003dc 000003de* 22
CONTENTS, ALLOC, LOAD, DATA
3 .rdata 00000010 0000041c 0000041c 0000041le*02
CONTENTS, ALLOC, LOAD, DATA
4 .stab 0000030c 00000000 00000000 00000426+ 22
CONTENTS, RELOC, READONLY, DEBUGGING
5 .stabstr 000004f5 00000000 00000000 00000738=x02
CONTENTS, READONLY, DEBUGGING
6 .comment 00000024 00000000 00000000 00000c2d+*02

CONTENTS, READONLY
Disassembly of section .text:

00000100 <_stext >:
100: 18 20 fO 00 I . movhi rl1,0xf000
104: a8 21 04 50 I.ori rl,rl,0x450

00000108 <_mem_data_copy >:

108: 18 60 fO 00 I .movhi r3,0xf000
10c: a8 63 00 00 I.ori r3,r3,0x0
110: 18 80 00 00 | .movhi r4 ,0x0
114: a8 84 03 dc I.ori rd,r4,0x3dc
118: 18 a0 00 00 I.movhi r5,0x0
1lc: a8 a5 04 1c I.ori r5,r5,0x41c
120: e0 a5 20 02 |.sub r5,r5,r4

124: bc 05 00 00 |.sfeqi r5,0x0

128: 10 00 00 Oa I.bf 150 <_jump_main>
12c: 15 00 00 00 I.nop 0x0

00000130 <_mem_data_loop >:

130: 84 c4 00 00 I.lwz r6,0x0(r4)

134: d4 03 30 00 |.sw 0x0(r3),r6

138: 9c 63 00 04 |.addi r3,r3,0x4

13c: 9c 84 00 04 |.addi r4,r4,0x4

140: 9c a5 ff fc |.addi r5,r5,0xfffffffc
144: bd 45 00 00 |.sfgtsi r5,0x0

148: 13 ff ff fa |.bf 130 <__stack+0xffffce0 >
l4c: 15 00 00 00 I .nop 0x0

00000150 <_jump_main >:
150: 18 40 00 00
154: a8 42 02 30
158: 44 00 10 00
15c: 15 00 00 00

.movhi r2,0x0
.ori r2,r2,0x230
jror2

|
|
|
I.nop 0x0
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00000160 <_Mult>:
#include "Test.h"

int Mult(int a){

160: 9c 21 ff d4 I.addi rl,rl1,0xffffffd4
164: d4 01 10 04 |.sw Ox4(rl),r2

168: 9c 41 00 2c |.addi r2,r1,0x2c
16¢c: d4 01 48 00 l.sw 0Ox0(rl),r9

170: d7 e2 1ffc I.sw Oxfffffffc(r2),r3
if (a <= 1) return 1;

174: 84 62 ff fc I.lwz r3,0xfffffffc (r2)
178: d7 e2 1f e8 |.sw Oxffffffe8(r2),r3
17c: 84 82 ff e8 I.lwz r4 ,0xffffffe8(r2)

180: bd 44 00 01
184: 10 00 00 06
188: 15 00 00 00
18c: 9c 60 00 01

.sfgtsi r4,0x1

.bf 19¢ <_Mult+0x3c>
.nop 0x0

.addi r3,r0,0x1

190: d7 e2 1f fO |.sw OxfffffffO(r2),r3
194: 00 00 00 15 I.j 1e8 <_Mult+0x88>
198: 15 00 00 00 |.nop 0x0
a = ax Mult(a — 1);
19c: 84 82 ff fc I.lwz r4,0xfffffffc (r2)
1la0: d7 e2 27 e4 I.sw Oxffffffed (r2),r4d
la4d: 84 62 ff e4d I.lwz r3,0xffffffed (r2)
la8: 9c 63 ff ff |.addi r3,r3,0 xffffffff
lac: d7 e2 1f f4 l.sw Oxfffffff4 (r2),r3
1b0: 84 62 ff f4 I.lwz r3,0 xfffffff4 (r2)
1b4: 07 ff ff eb |.jal 160 <__stack+0xffffd10 >
1b8: 15 00 00 00 I.nop 0x0
1lbc: d7 e2 5f 8 I.sw Oxfffffff8(r2),rl11
1cO0: 84 82 ff fc I.lwz r4,0xfffffffc (r2)
1lc4: d7 e2 27 e0 I.sw Oxffffffe0(r2),r4d
1c8: 84 62 ff e0 I.lwz r3,0xffffffe0(r2)
lcc: 84 82 ff f8 I.lwz rd4,0 xfffffff8 (r2)
1d0: e0 63 23 06 I.mul r3,r3,r4
1d4: d7 e2 1f dc |.sw Oxffffffdc (r2),r3
1d8: 84 62 ff dc I.lwz r3,0xffffffdc (r2)
ldc: d7 e2 1ffc |.sw Oxfffffffc(r2),r3
return a;
1e0: 84 82 ff fc I.lwz r4,0xfffffffc (r2)
le4d: d7 e2 27 f0 |.sw Oxfffffffo(r2),r4
le8: 84 62 ff fO I.lwz r3,0 xfffffffo (r2)
lec: d7 e2 1f ec |.sw Oxffffffec(r2),r3
}
1f0: 85 62 ff ec I.lwz r1l,0xffffffec(r2)
1f4: 85 21 00 00 I.lwz r9,0x0(rl)
1f8: 84 41 00 04 l.lwz r2,0x4(rl)
1fc: 44 00 48 00 l.jr r9
200: 9c 21 00 2c |.addi rl,rl1,0x2c

00000204 <_exit_sim >:
#include "Test.h"

#define SIM

#ifdef SIM

void exit_sim (void){

204: 9c 21 ff 8 I.addi rl1,r1,0xfffffff8

208: d4 01 10 00 l.sw 0x0(rl),r2

20c: 9c 41 00 08 |.addi r2,r1,0x8
__asm__ __volatile__ ("l.add r3,r0,%0\n\t"

210: 9c 60 00 01 |.addi r3,r0,0x1

214: d7 e2 1ffc I.sw Oxfffffffc(r2),r3
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218: 84 62 ff fc I.lwz r3,0xfffffffc (r2)
21c: e0 60 18 00 |.add r3,r0,r3

220: 15 00 00 01 | .nop 0Ox1

224 84 41 00 00 I.lwz r2,0x0(rl)

228: 44 00 48 00 l.jr r9

22c: 9c 21 00 08 |.addi rl1,rl1,0x8

00000230 <_main>:

}
#endif

int mem[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
static int b = 6;

int main() {

230: 9c 21 ff 8c I.addi rl,r1,0xffffff8c
234: d4 01 10 04 |.sw Ox4(rl),r2
238: 9c 41 00 74 |.addi r2,r1,0x74
23c: d4 01 48 00 l.sw Ox0(rl),r9
int i = 12;
240: 9c 60 00 Oc |.addi r3,r0,0xc
244 d7 e2 1f dO |.sw Oxffffffdo(r2),r3
248: 84 82 ff dO I.lwz r4 ,0xffffffd0o (r2)
24c: d7 e2 27fc |.sw Oxfffffffc(r2),r4
if (i %5 == 0){
250: 84 62 ff fc I.lwz r3,0xfffffffc (r2)
254: d7 e2 1f cc l.sw Oxffffffcc(r2),r3

258: 9c¢ 80 00 05
25c¢: d7 e2 27 c4

.addi r4,r0,0x5
.sw Oxffffffc4 (r2),r4

260: 84 62 ff cc I.lwz r3,0xffffffcc (r2)
264: 84 82 ff c4 I.lwz r4,0xffffffc4 (r2)
268: e0 63 23 09 I.div r3,r3,r4

26¢C: d7 e2 1f c8 |.sw Oxffffffc8(r2),r3
270: 84 62 ff c8 I.lwz r3,0xffffffc8(r2)
274: d7 e2 1f cO |.sw OxffffffcO(r2),r3
278: 84 82 ff cO I.lwz r4 ,0xffffffc0O(r2)
27c: b8 84 00 02 I.slli rd4,r4,0x2

280: d7 e2 27 bc I.sw Oxffffffbc(r2),r4
284: 84 62 ff bc I.lwz r3,0xffffffbc (r2)
288: 84 82 ff c8 I.lwz r4,0xffffffc8(r2)
28c: e0 63 20 00 |.add r3,r3,r4

290: d7 e2 1f bc |.sw Oxffffffbc(r2),r3
294: 84 62 ff cc I.lwz r3,0xffffffcc (r2)
298: 84 82 ff bc I.lwz r4,0xffffffbc (r2)
29c: e0 63 20 02 |.sub r3,r3,r4

2a0: d7 e2 1f d8 .sw Oxffffffd8(r2),r3
2a4: 84 62 ff d8 I.lwz r3,0xffffffd8 (r2)
2a8: bc 23 00 00 .sfnei r3,0x0
2ac: 10 00 00 2b .bf 358 <_main+0x128>
2b0: 15 00 00 00 .nop 0x0

mem[b] = mem[b] + 5;
2b4: 18 80 00 00
2bh8: a8 84 04 18 .ori rd,r4,0x418
2bc: d7 e2 27 b8 .sw Oxffffffb8 (r2),r4
2¢0: 84 62 ff b8 I.lwz r3,0xffffffb8 (r2)
2c4: 84 63 00 00 dwz r3,0x0(r3)
2c8: d7 e2 1f dc .sw Oxffffffdc(r2),r3
2cc: 18 80 00 00 .movhi r4 ,0x0
2d0: a8 84 04 18 .ori rd,r4,0x418
2d4: d7 e2 27 b4 .sw Oxffffffb4 (r2),r4
2d8: 84 62 ff b4 I.lwz r3,0xffffffb4 (r2)
2dc: 84 63 00 00 dwz r3,0x0(r3)
2e0: d7 e2 1f e0 .sw Oxffffffe0(r2),r3
2e4: 18 80 00 00 .movhi r4 ,0x0
2e8: a8 84 03 dc .ori rd,r4,0x3dc
2ec: d7 e2 27 bo .sw Oxffffffb0 (r2),r4

.movhi r4 ,0x0
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2f0: 84 62 ff e0
214 b8 63 00 02
2f8: d7 e2 1f ac
2fc: 84 82 ff ac
300: 84 62 ff b0
304: e0 84 18 00
308: d7 e2 27 a8
30c: 84 82 ff a8
310: 84 84 00 00
314: d7 e2 27 e4
318: 84 62 ff e4
3lc: 9c¢ 63 00 05
320: d7 e2 1f e8
324: 18 80 00 00
328: a8 84 03 dc
32c: d7 e2 27 a4
330: 84 62 ff dc
334: b8 63 00 02
338: d7 e2 1f a0
33c: 84 82 ff a0
340: 84 62 ff a4
344: e0 84 18 00
348: d7 e2 27 9c
34c: 84 62 ff e8
350: 84 82 ff 9c
354: d4 04 18 00
}
i += 2;
358 84 82 ff fc
35¢ d7 e2 27 98
360 84 62 ff 98
364 9c¢ 63 00 02
368 d7 e2 1f 94
36¢C: 84 82 ff 94
370: d7 e2 27fc
if (i %2 == 0){
374: 84 62 ff fc
378: d7 e2 1f ec
37c: 84 82 ff ec
380: a4 84 00 01
384: d7 e2 27 f0
388: 84 62 ff f0O
38c: bc 23 00 00
390: 10 00 00 08
394: 15 00 00 00
i = Mult(10);
398: 9c¢ 60 00 Oa
39c: 07 ff ff 71
3a0: 15 00 00 00
3a4: d7 e2 5f f4
3a8: 84 82 ff f4
3ac: d7 e2 27fc
}
#ifdef SIM
exit_sim () ;
3b0: 07 ff ff 95
3b4: 15 00 00 00
#endif
return O;
3b8: 9c¢ 60 00 00
3bc: d7 e2 1f f8
3c¢0: 84 82 ff f8
3c4: d7 e2 27 d4
}
3c8: 85 62 ff d4

lwz r3,0 xffffffe0 (r2)

I.slli r3,r3,0x2

.sw Oxffffffac(r2),r3
.lwz r4 ,0 xffffffac (r2)
dwz r3,0 xffffffb0 (r2)
.add r4,r4,r3

.sw Oxffffffa8(r2),r4
lwz rd4 0 xffffffa8 (r2)
lwz r4,0x0(r4)

.sw Oxffffffed (r2),r4
dwz r3,0 xffffffed (r2)
|.addi r3,r3,0x5

|.sw Oxffffffe8(r2),r3
| .movhi r4,0x0
|
|

.ori rd,r4,0x3dc

.sw Oxffffffad (r2),r4
dwz r3,0 xffffffdc (r2)
I.slli r3,r3,0x2

|.sw Oxffffffa0(r2),r3
dwz rd4 0 xffffffa0 (r2)
dwz r3,0 xffffffad (r2)
|.add r4,r4,r3

I.sw OxffffffOc(r2),r4
dwz r3,0xffffffe8 (r2)
dwz rd 0 xffffff9c (r2)
|.sw 0x0(rd4),r3

I.lwz r4 ,0xfffffffc (r2)

|.sw Oxffffffo8(r2),r4
dwz r3,0 xffffffo8 (r2)
|.addi r3,r3,0x2

|.sw Oxffffffo94 (r2),r3

lwz rd 0 xffffffo94 (r2)

I.sw Oxfffffffc(r2),r4

I.lwz r3,0xfffffffc (r2)
|.sw Oxffffffec(r2),r3

I.lwz r4 ,0xffffffec(r2)

I.jal

I.andi rd4,r4,0x1

|.sw Oxfffffffo(r2),r4

I.lwz r3,0 xfffffffo(r2)

|.sfnei r3,0x0

I.bf 3b0 <_main+0x180>
I.nop 0x0

|.addi r3,r0,0xa

I.nop 0xO0

|.sw Oxfffffffd (r2),r1l

I.jal

I.lwz r1l,0 xffffffd4 (r2)

lwz rd 0 xfffffffd (r2)

I.sw Oxfffffffc(r2),r4

|.addi r3,r0,0x0

.sw Oxfffffff8(r2),r3

I.lwz rd4,0 xfffffff8 (r2)

I.sw Oxffffffd4 (r2),r4

160 <__stack+0xffffd10 >

204 <__stack+0xffffdb4 >
I.nop 0x0
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3cc:
3d0:
3d4:
3d8:

85 21 00 00
84 41 00 04
44 00 48 00
9c 21 00 74

A.1.3 Linker Script

dwz r9,0x0(rl)
dwz r2,0x4(rl)
.jror9
.addi rl,r1,0x74

[ %%k kkkkok ok Kk Kk Kk Linker Script to set—up the Memory-mapsssssstssssssss*
e startup . ld&—————— */

/%

* Setup the memory map of the Code.

x stack grows down from high memory.

*

x The .text section— contains instructions

* The .data section— contains static initialized data
+ The .rdata section— contains static constant data

* The .bss section— contains uninitialized data

+ The .ctor section— contains addresses of global constructors
x The .dtor section— contains addresses of global destructors
+ The .stabs section- part of the debug symbol table
+ The .stabstr section- part of the debug symbol table
*

*+ The memory map look like this:

* + + <— Start of ROM

* |Interrupt Table |

* + + <— 0x100

* | . text |

x| _stext

x| *. text |

x| _etext

* + + <— initialized data goes here

x | .data

x| _sdata |

x| x. data

x| _sdata |

* + + <— the ctor and dtor lists arefor
x | .rdata C++ support if requied)

x| . rdata

| I

* + + <— Start of RAM

x| | start of bss, cleared by crtO
* | .bss start of heap

x| __bss_start |

x| _end

* + +

*

*

* .

x| _stack

* + + <— top of stack

*/

STACKSIZE = 0x100;
OFFSET = 0x0;

/* The

next line

in the script gives a value to the

PROVIDE (__stack = ADDR(.bss) + SIZEOF(.bss) + STACKSIZE +FSET);
PROVIDE (__copy_start =

PROVIDE (__copy_end = _copy_end);
PROVIDE (__copy_adr

_copy_start);

_copy_adr);

linker symbol stack »/
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MEMORY

{
rom (rx) : ORIGIN
ram (rwx): ORIGIN

0x000f0000
0x000f0000

0x00000000 , LENGTH
0xf0000000 , LENGTH

}

SECTIONS
{
. text 0x100
{
_stext =
* (. text)
_etext = .;
} > rom
%
All initialized data sections go in the RAM. Don’'t forget to
write additional code to intialize these sections. Better
still , include explicit initialization code in your
application program.
*/
.data : {
_copy_start = .;
_sdata =
x (. data)
_edata =
} > rom

.rdata
{
x(.rdata)
_copy_end = .;
/%
Include any C++ global constructors. If you're not using
C++ then you can delete this code.
*/
__CTOR_LIST__ = .;
LONG((__ CTOR_END__ — _ CTOR_LIST__) [/ 4— 2)
x(.ctors)
LONG(0)
__CTOR_END__ = .;
/%
Include any C++ global destructors. You can delete
this too.
*/
__DTOR_LIST__ = .;
LONG((__DTOR_END_ — _ DTOR_LIST__) / 4— 2)
x(.dtors)
LONG(0)
__DTOR END__ = .;
} > rom
/%
The .bss sections , which are uninitialized in thsurce and
set to zero at run time, are located in RAM after the .data
sections. Beyond the end of the .bss sections are the
heap and stack.
*/
.bss (NOLOAD) :
{
_copy_adr = .;
. = ( SIZEOF (.data) + SIZEOF (.rdata) );
__bss_start = .;
x(.bss)
* (COMMON)
end = ALIGN(0x2);
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_end = ALIGN(0x2);

} > ram
/%
Debug symbol tables are not loaded, bdb need to get
linked with the rest of the program.
*/
.stab 0 (NOLOAD)
{
[ .stab ]
}
.stabstr 0 (NOLOAD)
{
[ .stabstr ]
}
}

A.1.4 Startup Script

e Startup Script to include explicit initialization code—————— */
o startup .S—————— */

.extern __stack

.extern __copy_start

.extern __copy_end

.extern __copy_adr

/+ Core jumps here at start and reset/
_stext:

/= Stack initialization =/

I.movhi rl,hi(__stack)

I.ori rl,rl,lo(__stack)

_mem_data_copy:
/= Copy the initialated data and static variables from Rom tomRe/
I .movhi r3,hi(__copy_adr)
I.ori r3,r3,lo(__copy_adr)
I .movhi r4 ,hi(__copy_start)
I.ori rd ,rd4 lo(__copy_start)
I .movhi r5,hi(__copy_end)
I.ori r5,r5,lo(__copy_end)
| .sub r5,r5,r4

|

|

|

.sfeqi r5,0
. bf _jump_main
.nop

_mem_data_loop:

. lwz r6,0(r4)
| .sw 0(r3),r6
|.addi r3,r3,4
|.addi r4,rd4 .4
|.addi r5,r5-4
|
|
|

.sfgtsi r5,0
. bf _mem_data_loop
.nop

[+ Jump to Main =/
_jump_main:
I.movhi r2,hi(_main)
I.ori r2,r2,lo(_main)
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l.jr r2
| .nop

A.1.5 A Sample Makefile

[x++xxx Makefile to compile the application programs with the ORQ2GNU
Toolchainsxsxxx [

###HHHHHH Names #HH#H##BBHHHHHIH

EXECUTABLE = output

MAIN_FILE = main.c

LINKER_SCRIPT_NAME = startup.Id

SIM_CONFIG_FILE = cpu.cfg

S_FILES = $(wildcard =.S)
C_FILES = $(filter—out $(MAIN_FILE) ,$(wildcard =.c))
O_FILES = $(S_FILES:%.S=%.0) $(C_FILES:%.c=%.0)

DELETE = $(EXECUTABLE) $(EXECUTABLE).|st $(EXECUTABLE)ihx $(wildcard «.0)

#it##### GCC, LD, OBIDUMP #######
#export PATH="$PATH:/opt/or32elf/bin"

CC = or32-elf—gcc

LD = or32—elf-Id

OD = or32—elf—objdump
OC = or32-elf-objcopy

SIZE = or32-elf-size
SIM = or32—elf—sim

#e##HHnHEt FLAGS #H#HHHHBHSHSHHY

DEBUG_ON_OFF =—gstabs3

OPTIMIZE_LEVEL =

#-01 —02 —03 —0Os —finline —functions

FLAGS —nostartfiles —mhard-div —mhard-mul —1. -W —Wall
CFLAGS $(DEBUG_ON_OFF) $(OPTIMIZE_LEVEL) $(FLAGS)

.PHONY : all clean
all : $(EXECUTABLE)

$ (EXECUTABLE) : $(O_FILES)
#### Create executable ####
$(CC) $(CFLAGS) -T $(LINKER_SCRIPT_NAME) $%—0 $@ $(MAIN_FILE)
$(OD) -S —h $@ > $@. Ist
$(0OC) -O ihex $@ $@.ihx
$(SIZE) $@-A —radix=16

.C.0:
#### Create Objectfiles of c ####
$(CC) $(CFLAGS)—c $~

.S.o0:
#### Create Objectfiles of assembler ####
$(CC) $(CFLAGS)—c $7

sim
$(SIM) —f $(SIM_CONFIG_FILE) $(EXECUTABLE)
#######H Remove Files ######HH

clean
rm —rf $(DELETE)
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A.2.1 Empty ELF file

BITS 32

ehdr:

times 8 db

ehdrsize
phdr:

phdrsize
_start:
filesize

0x08048000

; EIf32_Ehdr
Ox7F, "ELF", 1, 1, 1, O e_ident
0
2 ; e_type
3 e_machine
1 ; e_version
_start ; e_entry
phdr — $$ ; e_phoff
0 ; e_shoff
0 ; e_flags
ehdrsize ; e_ehsize
phdrsize e_phentsize
1 ; e_phnum
0 e_shentsize
0 ; e_shnum
0 e_shstrndx

$ ehdr
EIf32_Phdr

1 ; p_type
0 ; p_offset
$$ ; p_vaddr
$$ ; p_paddr
filesize ; p_filesz
filesize ; p_memsz
5 ; p_flags
0x1000 ; p_align
$- phdr
$—- $%

A.2.2 Configuration File for the Orlksim Library

/%

*

x This file is part of OpenRISC 1000 Architectural Simulator.lt contains
x the configuration suitablefor running the simple SoC.

*

x For explanation of the different fields, see the default silmtion

x configuration file supplied with the Orlksim (sim.cfg).

*

+ The "generic" section is an extension to the Orlksim to sugpmodeling of
x external peripherals.

*

* $1d$

*

* [

section generic
enabled
baseaddr
size
byte_enabled
hw_enabled

= 0x00000000
0X7FFFFFFF

1

1
1
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word_enabled = 1
name = "Gen_devl"
end
section generic
enabled = 1
baseaddr = 0x80000000
size = 0x80000000
byte_enabled = 1
hw_enabled = 1
word_enabled = 1
name = "Gen_dev2"
end

/*To cover addr =
/%
section generic

OXFFFFFFFF /

enabled = 1
baseaddr = OXFFFFFFFF
size = 0x00000001
byte_enabled = 1
hw_enabled = 1
word_enabled = 1
name = "Gen_dev3"

end

*/

section sim
verbose = 0
debug = 0
profile = 0
history = 0
clkcycle = 10ns

end

section cpu
ver = 0x1200
rev = 0x0001
superscalar = 0
hazards = 0
dependstats = 0
sbuf_len = 0

end

/= Disabled Sections.

section ic
enabled
nsets
nways
blocksize
hitdelay
missdelay

end

section dc
enabled
nsets
nways
blocksize
load_hitdelay
load_missdelay
store_hitdelay
store_missdelay
end

o
NN e ey
oPokrnvo

1
N
FrNo

N
oo

20
20

N
o

The first two need all
to a bug in Orlksim=«/

their additionalefds due
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section immu
enabled = 0
end

section dmmu
enabled = 0
end

section VAPI
enabled = 0
end

section dma
enabled = 0
end

section pm
enabled = 0
end

section bpb
enabled = 0
end

section debug
enabled = 0
end

section uart
enabled = 0
end

section ethernet
enabled = 0
end

section gpio
enabled = 0
end

section ata
enabled = 0
end

section vga
enabled = 0
end

section fb
enabled = 0
end

section kbd
enabled = 0
end

section mc
enabled = 0
end
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A.2.3 Modifications in the ISS

Following list of modifications we made in the ISS (Orlksim)use it as a golden model for the
simulation-based verification of the OR1200 core.

[x%xx simple . cfgexxx /
/*a. Generic peripheral mapping for complete 3Bit address space (Appendix (A.2.2)%l/.

[xxx% Orlksim .hexxx [
/*a. Addition of a function pointer for third upcall i.e., upagtatus , in the
orlksim_init() declaration #/
int orlksim_init( const char »config_file ,
const char ~image_file ,
void xclass_ptr,
unsigned long int (xupr)( void xclass_ptr ,unsigned long int addr,
unsigned long int mask),
void (xupw)( void =class_ptr ,unsigned long int addr, unsigned long
int mask, unsigned long int wdata),
void (*upcpustatu9( void xclass_ptr, void *cpu_statusPtr));

[x+xx |ibtoplevel.coxx [
/*a. In the defination of orlksim_init().
i. Add function pointer argument for third upcall i.e., upuoptatus().
...void (xupcpustatus)( voidxclass_ptr , voidxcpu_statusPtr));
ii. Assign upcall pointer to a function pointer which can bec@essed within the ISS
Lx/
config.ext.write_up_cpustatuss upcpustatus

[x%xx sim—config . hexxx [
/*a. Add a function pointer write_up_cpustatus () in data stture for configuration
datax/
struct config {
struct{ /~ External linkage for SystemG:/
void xclass_ptr;
unsigned long int (xread_up) (oid ~class_ptr,
unsigned long int addr, unsigned long int mask);
void (= write_up) (void «class_ptr, unsigned long int addr,
unsigned long int mask, unsigned long int wdata);
void (*write _up_ cpustatup (void =class_ptr,void »cpu_statusPtr);
} ext;

/*b. Addition of a data structure to hold a void function poinmtegor writing cpu state
when upcall/
struct ext_access_cpu_status {
void (»write_cpustatus_up) oid =*); };
extern struct ext_access_cpu_status cpustatus_up;

[%#xx sim—config .cxxxx /[
a. struct ext_access_cpu_status cpustatus_up;
b. config.ext.write_up_cpustatuss NULL;

[*x*%xx generic .cxxx /[
/*a. Generic write status upcall routine</
static void ext_write_cpustatus oid «cpu_statusPtr){
config.ext.write _up_cpustatus(config.ext.class_ptr, cpu_statusPtr);
} I+ ext_callback () */

/*b. In generic_sec_start ()x/
cpustatus_up .write_cpustatus_up = ext_write_cpustatus

[xxx%x execute .@xx* [
/*a. Call write_cpustatus_up () upcall after every instruoti execution to write the
ISS state upx/
cpustatus_up .write_cpustatus_up(&cpu_state);
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[% xxkxxxx  @XECYEN . @xkkxxx [

L.JR:
case Ox11:
/* Not unique: real mask fffffffffc000000 and current mask 0000 differ — do final
check =/
if ((insn & 0xfc000000) == 0x44000000) {
[« Instruction: |.jr x/
{
uorreg_t a;
/+ Number of operands: 1x/
a = (insn >> 11) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
{ [« "1_jr" =/
cpu_state.pc_delay = PARAMO;
next_delay_insn = 1;
if (config.sim. profile)
fprintf (runtime.sim.fprof, “%08IIX %"PRIXADDR"\n", runtime.sim.cycles ,
cpu_state.pc_delay);
}
#undef SET_PARAM
#undef PARAMO
if (do_stats) {
current—>insn_index = 104; /[« "l.jr" «/
analysis(current);
} else {
/* Invalid insn =/
|_invalid ();
if (do_stats) {
current—>insn_index =-1; [« "222" x|/
analysis(current);
}
}
}
break;
L.JALR:
case 0x12:
/* Not unique: real mask fffffffffc000000 and current mask 0000 differ — do final
check =/
if ((insn & 0xfc000000) == 0x48000000) {
/[« Instruction: |.jalr =/
{

uorreg_t a;

/+ Number of operands: 1x/

a = (insn >> 11) & Ox1f;

#define SET_PARAMO(val) cpu_state.reg[a] = val

#define PARAMO cpu_state.reg[a]

{ [« "1_jalr" =/
cpu_state.pc_delay = PARAMO;
setsim_reg (LINK_ REGNO, cpu_state.pc + 8);
next_delay_insn = 1;

}
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#undef SET_PARAM
#undef PARAMO

if (do_stats) {

current—>insn_index = 105; [/« "l.jalr" =/
analysis(current);
}
} else{
[+ Invalid insn %/
{
I_invalid ();
if (do_stats) {
current—>insn_index =-1; [+ "22?2" «]
analysis(current);
}
}
}

break;
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[ % ddk ko kK kK EXECQEeNn . Exkkxxkik % /

case 0x30:
/* Not unique: real mask fffffffffc000000 and current mask G000 differ — do final
check =/
if ((insn & 0xfc000000) == 0xc0000000) {
[+ Instruction: |.mtspr =/
{
uorreg_t a, b, c;
/+ Number of operands: 3x/
a = (insn >> 16) & Ox1f;
#define SET_PARAMO(val) cpu_state.reg[a] = val
#define PARAMO cpu_state.reg[a]
b = (insn >> 11) & 0x1f;
#define PARAML cpu_state.reg[b]
c = (insn >> 0) & Ox7ff;

c |= ((insn >> 21) & 0x1f) << 11;
#define PARAM2 c
{ [ "l_mtspr" =/

uintlé_t regno = PARAMO + PARAMZ;
uorreg_t value = PARAML;

if (cpu_state.sprs[SPR_SR] & SPR_SR _SM)
mtspr(regno, value);
else {
PRINTF ("WARNING: trying to write SPR while SR[SUPV] is clead .\n");

sim_done () ;
}
}
#undef SET_PARAM
#undef PARAMO

#undef PARAM1
#undef PARAM2

if (do_stats) {
current—>insn_index = 139; /+ "|l.mtspr" =/
analysis(current);

} else {
/[« Invalid insn %/

|_invalid ();

if (do_stats) {
current—>insn_index =-1; [+ "22?2" x|/
analysis(current);
}
}
}

break;
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Appendix

List of Acronyms

DSP

SoC

IHex

ROM

RAM

Digital Signal Processor
System on Chip

Intel Hexadecimal File format
Read Only Memory

Random Access Memory

OR1200 OpenRISC1200

ISS

OVM

DPI

DUV

Cbv

IvC

MVC

SvC

ovcC

VE

BFM

TLM

PC

Instruction Set Simulator

Open Verification Methodology
Direct Programming Interface
Design Under Verification
Coverage Driven Verification
Interface Verification Component
Module Verification Component
System Verification Component
Open Verification Component
Verification Environment

Bus Functional Model
Transaction Level Modeling

Program Counter
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SR

ESR

EPCR

EEAR

EA

CPU

ALU

LSU

MAC

DM

IMMU Instruction Memory Management Unit

Supervision Register

Exception Supervision Register
Exception Program Counter Register
Exception Effective Address Register
Effective Address

Central Processing Unit

Arithmetic and Logic Unit

Load Store Unit

Multiply Accumulate Unit

Instruction Cache

Data Cache

Instruction Memory

Data Memory

DMMU Data Memory Management Unit

RTL

Register Transfer Level

ORBIS32 OpenRISC Basic Instruction Set

RFE

GPR

IWB

DwB

EX

WB

RF

NOP

TLM

Return From Exception
General Purpose Register
Instruction Wishbone Interface
Data Wishbone Interface
Instruction Fetch

Instruction Decode

Instruction Execute

Write Back

Register File

No Operation

Transaction Level Modeling
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