OpenCores
URL https://opencores.org/ocsvn/miniuart2/miniuart2/trunk

Subversion Repositories miniuart2

[/] [miniuart2/] [trunk/] [impl/] [Xilinx_xcs10/] [Xilinx/] [xilinx.ucf] - Rev 26

Compare with Previous | Blame | View Log

############################################## 
#      BASIC UCF SYNTAX EXAMPLES V2.1.6      # 
############################################## 
#
# The "#" symbol is a comment character.   To use this sample file, find the
# specification necessary, remove the comment character (#) from the beginning 
# of the line, and modify the line (if necessary) to fit your design.
#
#              TIMING SPECIFICATIONS 
# 
# Timing specifications can be applied to the entire device (global) or to 
# specific groups in your design (called "time groups'). The time groups are 
# declared in two basic ways. 
# 
# Method 1: Based on a net name, where 'my_net' is a net that touches all the 
#           logic to be grouped in to 'logic_grp'. Example: 
#NET my_net TNM_NET = logic_grp ; 
# 
# Method 2: Group using the key word 'TIMEGRP' and declare using the names of 
#           logic in your design. Example: 
#TIMEGRP group_name = FFS ("U1/*"); 
#           creates a group called 'group_name' for all flip-flops within 
#           the hierarchical block called U1. Wildcards are valid. 
# 
# Grouping is very important because it lets you tell the software which parts 
# of a design run at which speeds.  For the majority of the designs with only 
# one clock, use simple global constraints. 
# 
# The type of grouping constraint you use can vary depending on the synthesis 
# tools you are using.  Foundation Express does better with Method 2. 
# 
# 
############################################################ 
# Internal to the device clock speed specifications - Tsys # 
############################################################ 
# 
# data      _________      /^^^^^\       _________   out 
# ----------| D   Q |-----{ LOGIC } -----| D   Q |------ 
#           |       |      \vvvvv/       |       | 
#        ---|> CLK  |                 ---|> CLK  | 
# clock  |  ---------                 |  --------- 
# ------------------------------------ 
# 
# --------------- 
# Single Clock 
# --------------- 
# 
# ---------------- 
# PERIOD TIME-SPEC 
# ---------------- 
# The PERIOD spec. covers all timing paths that start or end at a 
# register, latch, or synchronous RAM which are clocked by the reference 
# net (excluding pad destinations).  Also covered is the setup 
# requirement of the synchronous element relative to other elements 
# (ex. flip flops, pads, etc...). 
# NOTE:  The default unit for time is nanoseconds. 
# 
#NET clock PERIOD = 50ns ; 
# 
#       -OR- 
# 
# ------------------ 
# FROM:TO TIME-SPECs 
# ------------------ 
# FROM:TO style timespecs can be used to constrain paths between time 
# groups.  NOTE:  Keywords:  RAMS, FFS, PADS, and LATCHES are predefined 
# time groups used to specify all elements of each type in a design. 
#TIMEGRP RFFS = RISING FFS ("*");  // creates a rising group called RFFS 
#TIMEGRP FFFS = FALLING FFS ("*");  // creates a falling group called FFFS 
#TIMESPEC TSF2F  = FROM : FFS   : TO : FFS   : 50 ns; // Flip-flips with the same edge 
#TIMESPEC TSR2F  = FROM : RFFS  : TO : FFFS  : 25 ns; // rising edge to falling edge 
#TIMESPEC TSF2R  = FROM : FFFS  : TO : RFFS  : 25 ns; // falling edge to rising edge 
# 
# --------------- 
# Multiple Clocks 
# --------------- 
# Requires a combination of the 'Period' and 'FROM:TO' type time specifications 
#NET clock1 TNM_NET = clk1_grp ; 
#NET clock2 TNM_NET = clk2_grp ; 
# 
#TIMESPEC TS_clk1 = PERIOD : clk1_grp : 50 ; 
#TIMESPEC TS_clk2 = PERIOD : clk2_grp : 30 ; 
#TIMESPEC TS_ck1_2_ck2 = FROM : clk1_grp : TO : clk2_grp : 50 ; 
#TIMESPEC TS_ck2_2_ck1 = FROM : clk2_grp : TO : clk1_grp : 30 ; 
# 
# 
############################################################ 
# CLOCK TO OUT specifications - Tco                        # 
############################################################ 
# 
# from      _________      /^^^^^\       --------\ 
# ----------| D   Q |-----{ LOGIC } -----| Pad    > 
# PLD       |       |      \vvvvv/       --------/ 
#        ---|> CLK  | 
# clock  |  --------- 
# -------- 
# 
# ---------------- 
# OFFSET TIME-SPEC 
# ---------------- 
# To automatically include clock buffer/routing delay in your 
# clock-to-out timing specifications, use OFFSET constraints . 
# For an output where the maximum clock-to-out (Tco) is 25 ns: 
#
#NET out_net_name OFFSET = OUT 25 AFTER clock_net_name ; 
# 
#      -OR- 
# 
# ------------------ 
# FROM:TO TIME-SPECs 
# ------------------ 
#TIMESPEC TSF2P  = FROM : FFS   : TO : PADS  : 25 ns; 
# Note that FROM: FFS : TO: PADS constraints start the delay analysis 
# at the flip flop itself, and not the clock input pin.  The recommended 
# method to create a clock-to-out constraint is to use an OFFSET constraint.  
# 
# 
############################################################ 
# Pad to Flip-Flop speed specifications - Tsu              # 
############################################################ 
# 
# ------\         /^^^^^\       _________   into PLD 
# |pad   >-------{ LOGIC } -----| D   Q |------ 
# ------/         \vvvvv/       |       | 
#                            ---|> CLK  | 
# clock                      |  --------- 
# ---------------------------- 
# 
# ---------------- 
# OFFSET TIME-SPEC 
# ---------------- 
# To automatically account for clock delay in your input setup timing 
# specifications, use OFFSET constraints. 
# For an input where the maximum setup time is 25 ns: 
#NET in_net_name OFFSET = IN 25 BEFORE clock_net_name ; 
# 
#      -OR- 
# 
# ------------------ 
# FROM:TO TIME-SPECs 
# ------------------ 
#TIMESPEC TSP2F  = FROM : PADS  : TO : FFS   : 25 ns; 
# Note that FROM: PADS : TO: FFS constraints do not take into account any 
# delay for the clock path.  The recommended method to create an input 
# setup time constraint is to use an OFFSET constraint. 
# 
# 
############################################################ 
# Pad to Pad speed specifications - Tpd                    # 
############################################################ 
# 
# ------\         /^^^^^\       -------\ 
# |pad   >-------{ LOGIC } -----| pad   > 
# ------/         \vvvvv/       -------/ 
# 
# ------------------ 
# FROM:TO TIME-SPECs 
# ------------------ 
#TIMESPEC TSP2P  = FROM : PADS  : TO : PADS  : 125 ns; 
# 
# 
############################################################ 
# Other timing specifications                              # 
############################################################ 
# 
# ------------- 
# TIMING IGNORE 
# ------------- 
# If you can ignore timing of paths, use Timing Ignore (TIG). NOTE: The 
# "*" character is a wild card, which can be used for bus names.  A "?" 
# character can be used to wild-card one character. 
# Ignore timing of net reset_n: 
#NET : reset_n : TIG ; 
# 
# Ignore data_reg(7:0) net in instance mux_mem: 
#NET : mux_mem/data_reg* : TIG ; 
# 
# Ignore data_reg(7:0) net in instance mux_mem as related to a TIMESPEC 
# named TS01 only: 
#NET : mux_mem/data_reg* : TIG = TS01 ; 
# 
# Ignore data1_sig and data2_sig nets: 
#NET : data?_sig : TIG ; 
# 
# --------------- 
# PATH EXCEPTIONS 
# --------------- 
# If your design has outputs that can be slower than others, you can 
# create specific timespecs similar to this example for output nets 
# named out_data(7:0) and irq_n: 
#TIMEGRP slow_outs = PADS(out_data* : irq_n) ; 
#TIMEGRP fast_outs = PADS : EXCEPT : slow_outs ; 
#TIMESPEC TS08 = FROM : FFS : TO : fast_outs : 22 ; 
#TIMESPEC TS09 = FROM : FFS : TO : slow_outs : 75 ; 
# 
# If you have multi-cycle FF to FF paths, you can create a time group 
# using either the TIMEGRP or TNM statements. 
# 
# WARNING:  Many VHDL/Verilog synthesizers do not predictably name flip 
# flop Q output nets.  Most synthesizers do assign predictable instance 
# names to flip flops, however. 
# 
# TIMEGRP example: 
#TIMEGRP slowffs = FFS(inst_path/ff_q_output_net1* : 
#inst_path/ff_q_output_net2*); 
# 
# TNM attached to instance example: 
#INST inst_path/ff_instance_name1_reg* TNM = slowffs ; 
#INST inst_path/ff_instance_name2_reg* TNM = slowffs ; 
# 
# If a FF clock-enable is used on all flip flops of a multi-cycle path, 
# you can attach TNM to the clock enable net.  NOTE:  TNM attached to a 
# net "forward traces" to any FF, LATCH, RAM, or PAD attached to the 
# net. 
#NET ff_clock_enable_net TNM = slowffs ; 
# 
# Example of using "slowffs" timegroup, in a FROM:TO timespec, with 
# either of the three timegroup methods shown above: 
#TIMESPEC TS10 = FROM : slowffs : TO : FFS : 100 ; 
# 
# Constrain the skew or delay associate with a net. 
#NET any_net_name MAXSKEW = 7 ; 
#NET any_net_name MAXDELAY = 20 ns; 
# 
# 
# Constraint priority in your .ucf file is as follows: 
# 
#    highest 1.  Timing Ignore (TIG) 
#            2.  FROM : THRU : TO specs 
#            3.  FROM : TO specs 
#    lowest  4.  PERIOD specs 
# 
# See the on-line "Library Reference Guide" document for 
# additional timespec features and more information. 
# 
# 
############################################################ 
#                                                                                                                    # 
#         LOCATION and ATTRIBUTE SPECIFICATIONS            # 
#                                                                                                                    # 
############################################################ 
# Pin and CLB location locking constraints                 # 
############################################################ 
# 
# ----------------------- 
# Assign an IO pin number 
# ----------------------- 
#INST io_buf_instance_name  LOC = P110 ; 
#NET io_net_name  LOC = P111 ; 
# 
# ----------------------- 
# Assign a signal to a range of I/O pins 
# ----------------------- 
#NET "signal_name" LOC=P32, P33, P34; 
# 
# ----------------------- 
# Place a logic element(called a BEL) in a specific CLB location.  
# BEL = FF, LUT, RAM, etc... 
# ----------------------- 
#INST instance_path/BEL_inst_name  LOC = CLB_R17C36 ; 
# 
# ----------------------- 
# Place CLB in rectangular area from CLB R1C1 to CLB R5C7 
# ----------------------- 
#INST /U1/U2/reg<0> LOC=clb_r1c1:clb_r5c7; 
# 
# ----------------------- 
# Place hierarchical logic block in rectangular area from CLB R1C1 to CLB R5C7 
# ----------------------- 
#INST /U1* LOC=clb_r1c1:clb_r5c7; 
# 
# ----------------------- 
# Prohibit IO pin P26 or CLBR5C3 from being used: 
# ----------------------- 
#CONFIG PROHIBIT = P26 ; 
#CONFIG PROHIBIT = CLB_R5C3 ; 
# Config Prohibit is very important for forcing the software to not use critical 
# configuration pins like INIT or DOUT on the FPGA.  The Mode pins and JTAG 
# Pins require a special pad so they will not be available to this constraint 
# 
# ----------------------- 
# Assign an OBUF to be FAST or SLOW: 
# ----------------------- 
#INST obuf_instance_name FAST ; 
#INST obuf_instance_name SLOW ; 
# 
# ----------------------- 
# FPGAs only:  IOB input Flip-flop delay specification 
# ----------------------- 
# Declare an IOB input FF delay (default = MAXDELAY). 
# NOTE:  MEDDELAY/NODELAY can be attached to a CLB FF that is pushed 
# into an IOB by the "map -pr i" option. 
#INST input_ff_instance_name MEDDELAY ; 
#INST input_ff_instance_name NODELAY ; 
# 
# ----------------------- 
# Assign Global Clock Buffers Lower Left Right Side 
# ----------------------- 
# INST gbuf1 LOC=SSW 
# 
# #

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.