
Synthesizable System-on-Chip

with 64-bits RISC-V processor core

Technical Reference Manual

GENERATED: JUNE 23, 2018
AUTHOR: SERGEY KHABAROV

Name Position Signature Date
Prepared by Sergey Khabarov Technical Lead
Reviewed by Denis Nefedov
Approved by
Approved by

Contents

1 RISC-V System-on-Chip VHDL IP libraries 1

1.1 License . 1

1.2 Overview . 3

1.3 Library organization . 3

1.4 Top-Level structure . 4

2 RTL Verification 5

2.1 Top-level simulation . 5

2.2 VCD-files automatic comparision . 6

2.2.1 Generating VCD-pattern form SystemC model . 6

2.2.2 Compare RIVER SystemC model relative RTL . 6

3 RISC-V Processor 7

3.1 Overview . 7

3.2 Rocket CPU . 7

3.3 River CPU . 7

4 Peripheries 9

4.1 Debug Support Unit (DSU) . 9

4.1.1 DSU registers mapping . 9

4.1.1.1 CSR Region (32 KB) . 10

4.1.1.2 General CPU Registers Region (32 KB) . 12

4.1.1.3 Run Control and Debug support Region (32 KB) 13

4.1.1.4 Local DSU Region (32 KB) . 15

4.2 GPIO Controller . 16

4.2.1 GPIO registers mapping . 16

4.3 General Purpose Timers . 17

4.3.1 GPTimers overview . 17

4.3.2 GPTimers registers mapping . 17

4.4 Interrupt Controller . 19

CONTENTS ii

4.4.1 IRQ assignments . 19

4.4.2 IRQ Controller registers mapping . 19

4.5 UART . 22

4.5.1 Overview . 22

4.5.2 UART registers mapping . 22

4.6 SPI Controller . 23

4.6.1 Overview . 23

4.6.2 Mapped Registers . 23

4.7 Plug'n'Play support module . 25

4.7.1 PNP registers mapping . 25

4.7.2 PNP Device descriptors . 27

5 RISC-V debugger 29

5.1 Overview . 29

5.2 Project structure . 29

5.3 Ethernet setup . 30

5.3.1 Configure Host Computer . 30

5.3.2 Configure Windows Host . 31

5.3.3 Configure Linux Host . 36

5.3.4 Run Application . 37

5.4 Debug session . 37

5.4.1 Plugins interaction . 37

5.4.2 Start Debugger . 38

5.4.3 Debug Zephyr OS kernel with symbols . 39

5.5 Troubleshooting . 41

5.5.1 Image Files not found . 41

5.5.2 Can't open COM3 when FPGA is used . 42

5.5.3 EDCL: No response. Break read transaction . 42

6 Python Frontend 44

6.1 Prerequisites . 44

6.2 UART TAP . 44

6.3 Python Scripting . 46

Generated on
June 23, 2018

Chapter 1

RISC-V System-on-Chip VHDL IP libraries

1.1 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections
1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the
License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or
are under common control with that entity. For the purposes of this definition, "control" means (i) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software
source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form,
including but not limited to compiled object code, generated documentation, and conversions to other media
types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the
License, as indicated by a copyright notice that is included in or attached to the work (an example is provided
in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from)
the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent,
as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modi-
fications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal,

1.1 License 2

or written communication sent to the Licensor or its representatives, including but not limited to communica-
tion on electronic mailing lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding com-
munication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has
been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants
to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such
Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes
direct or contributory patent infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You
distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding
those notices that do not pertain to any part of the Derivative Works, in at least one of the following places:
within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation,
if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that
such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different
license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such
Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or
product names of the Licensor, except as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file.

Generated on
June 23, 2018

1.2 Overview 3

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work
(and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CO←↩

NDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,
or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to
in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised
of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may
choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations
and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your
own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against,
such Contributor by reason of your accepting any such warranty or additional liability.

1.2 Overview

The IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SOC) development. The IP
cores are centered around a common on-chip AMBA AXI system bus, and use a coherent method for simulation
and synthesis. This library is vendor independent, with support for different CAD tools and target technologies.
Inherited from gaisler GRLIB library plug&play method was further developed and used to configure and connect
the IP cores without the need to modify any global resources.

1.3 Library organization

Open source repository with VHLD libraries, Debugger and SW examples is available at:

https://github.com/sergeykhbr/riscv_vhdl

This repository is organized around VHDL libraries, where each major IP is assigned a unique library name. Using
separate libraries avoids name clashes between IP cores and hides unnecessary implementation details from the
end user.

Satellite Navigation support

Hardware part of the satellite navigation functionality is fully implemented inside of the gnsslib library. This
library is the commercial product of GNSS Sensor limited and in this shared repository you can find only←↩

: modules declaration, configuration parameters and stub modules that provide enough functionality to use
SOC as general purpose processor system based on RISC-V architecture. Netlists of the real GNSS IPs either
as RF front-end for the FPGA development boards could be acquires via special request.

Generated on
June 23, 2018

1.4 Top-Level structure 4

1.4 Top-Level structure

Features

• Pre-generated single-core "Rocket-chip" core (RISC-V). This is 64-bits processor with I/D caches, MMU,
branch predictor, 128-bits width data bus, FPU (if enabled) and etc.

• Custom 64-bits single-core CPU "River"(RISC-V).

• Set of common peripheries: UART, GPIO (LEDs), Interrupt controller, General Purpose timers and etc.

• Debugging via Ethernet using EDCL capability of the MAC. This capability allows to redirect UDP requests
directly on system bus and allows to use external debugger from the Reset Vector.

• Debug Support Unit (DSU) for the RIVER CPU with full debugging functionality support: run/halt, breakpoints,
stepping, registers/CSRs and memory access. Also it provides general SoC run-time information: Clock Per
Instruction (CPI), Bus Utilisization for each master device and etc.

• Templates for the AXI slaves and master devices with DMA access

• Configuration parameters to enable/disable additional functionality, like: GNSS Engine, Viterbi decoder, etc.

Information about GNSS (Satellite Navigation Engine) you can find at www.gnss-sensor.com.

Generated on
June 23, 2018

Chapter 2

RTL Verification

2.1 Top-level simulation

Test-bench example

Use file work/tb/riscv_soc_tb.vhd to run simulation scenario. You can get the following time diagram after
simulation of 2 ms interval.

Note

Simulation behaviour depends of current firmware image. It may significantly differs in a new releases either
as Zephyr OS kernel image is absolutely different relative GNSS FW image.

Some FW versions can detect RTL simulation target by reading 'Target' Register in PnP device that allows to speed-
up simulation by removing some delays and changing Devices IO parameters (UART speed for example).

Running on FPGA

Supported FPGA:

• ML605 with Virtex6 FPGA using ISE 14.7 (default).

• KC705 with Kintex7 FPGA using Vivado 2015.4.

2.2 VCD-files automatic comparision 6

Warning

In a case of using GNSS FW without connected RF front-end don't forget to switch ON DIP[0] (i_int_clkrf)
to enable Test Mode. Otherwise there wouldn't be generated interrupts and, as result, no UART output.

2.2 VCD-files automatic comparision

2.2.1 Generating VCD-pattern form SystemC model

Edit the following attributes in SystemC target script debugger/targets/sysc_river_gui.json to enable vcd-file gener-
ation.

• ['InVcdFile','i_river','Non empty string enables generation of stimulus VCD file'].

• ['OutVcdFile','o_river','Non empty string enables VCD file with reference signals']

Files i_river.vcd and o_river.vcd will be generated. The first one will be used as a RTL simulation stimulus to
generate input signals. The second one as a reference.

2.2.2 Compare RIVER SystemC model relative RTL

Run simulation in ModelSim with the following commands using correct pathes for your host:

vcd2wlf E:/Projects/GitProjects/riscv_vhdl/debugger/win32build/Debug/i_river.vcd -o e:/i_river.wlf
vcd2wlf E:/Projects/GitProjects/riscv_vhdl/debugger/win32build/Debug/o_river.vcd -o e:/o_river.wlf
wlf2vcd e:/i_river.wlf -o e:/i_river.vcd
vsim -t 1ps -vcdstim E:/i_river.vcd riverlib.RiverTop
vsim -view e:/o_river.wlf
add wave o_river:/SystemC/o_*
add wave sim:/rivertop/*
run 500us
compare start o_river sim
compare add -wave sim:/RiverTop/o_req_mem_valid o_river:/SystemC/o_req_mem_valid
compare add -wave sim:/RiverTop/o_req_mem_write o_river:/SystemC/o_req_mem_write
compare add -wave sim:/RiverTop/o_req_mem_addr o_river:/SystemC/o_req_mem_addr
compare add -wave sim:/RiverTop/o_req_mem_strob o_river:/SystemC/o_req_mem_strob
compare add -wave sim:/RiverTop/o_req_mem_data o_river:/SystemC/o_req_mem_data
compare add -wave sim:/RiverTop/o_dport_ready o_river:/SystemC/o_dport_ready
compare add -wave sim:/RiverTop/o_dport_rdata o_river:/SystemC/o_dport_rdata
compare run

Note

In this script I've used vcd2wlf and wlf2vcd utilities to form compatible with ModelSim VCD-file. Other-
wise there're will be errors because ModelSim cannot parse std_logic_vector siganls (only std_logic).

Generated on
June 23, 2018

Chapter 3

RISC-V Processor

3.1 Overview

Current repository supports two synthesizable processors: Rocket and River. Both of them implement open
RISC-V ISA. To select what processor to use there's special generic parameter:

CFG_COMMON_RIVER_CPU_ENABLE

3.2 Rocket CPU

Rocket is the 64-bits single issue, in-order processor developed in Berkley and shared as the sources writen on
SCALA language. It uses specally developed library Chisel to generate Verilog implementation from SCALA
sources.

Rocket Core usually implements all features of the latest ISA specification, either as multi-core support with L2-
cache implementation and many other. But it has a set of disadvantages: bad integration with other devices not
writen on SCALA, not very-good integration with RTL simulators, no reference model. It shows worse performance
than RIVER CPU (for now).

3.3 River CPU

River is my implementation of RISC-V ISA writen on VHDL either as all others parts of shared SoC implementation.
There's also availabel precise SystemC model integrated into Simulator which is used as a stimulus during RTL
simulation and garantee consistency of functional and SystemC models either as RTL.

River CPU is the 5-stage processor with the classical pipeline structure:

3.3 River CPU 8

Generated on
June 23, 2018

Chapter 4

Peripheries

List of implemented modules with AXI4 interface:

Debug Support Unit (DSU)

GPIO Controller

General Purpose Timers

Interrupt Controller

UART

SPI Controller

Plug'n'Play support module

4.1 Debug Support Unit (DSU)

Debug Support Unit (DSU) was developed to interact with "RIVER" CPU via its debug port interace. This bus
provides access to all internal CPU registers and states and may be additionally extended by request. Run control
functionality like 'run', 'halt', 'step' or 'breakpoints' imlemented using proprietary algorithms and intend to simplify
integration with debugger application.

Set of general registers and control registers (CSR) are described in RISC-V privileged ISA specification and also
available for read and write access via debug port.

Note

Take into account that CPU can have any number of platform specific CSRs that usually not entirely docu-
mented.

4.1.1 DSU registers mapping

DSU acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address location for
our implementation is 0x80020000. DSU directly transforms device offset address into one of regions of the debug
port:

• 0x00000..0x08000 (Region 1): CSR registers.

• 0x08000..0x10000 (Region 2): General set of registers.

• 0x10000..0x18000 (Region 3): Run control and debug support registers.

4.1 Debug Support Unit (DSU) 10

• 0x18000..0x20000 (Region 4): Local DSU region that doesn't access CPU debug port.

Example:

Bus transaction at address 0x80023C10 will be redirected to Debug port with CSR index 0x782.

4.1.1.1 CSR Region (32 KB)

User Exception Program Counter (0x00208). ISA offset 0x041.

Bits Type Reset Name Definition

64 RO 64h'0 uepc User mode exception program counter. Instruction URET is used to
return from traps in User Mode into specified instruction pointer. URET is
only provided if user-mode traps are supported.

Machine Status Register (0x01800). ISA offset 0x300.

Bits Type Reset Field Name Bits Description

1 RW 1b'0 SD 63 Bit summarizes whether either the FS field or XS field sig-
nals the presence of some dirty state that will require saving
extended user context to memory

22 RW 22h'0 WPRI 62:20 Reserved
5 RW 5h'0 VM (WARL) 28:24 Virtual addressing enable

4 RW 4h'0 WPRI 23:20 Reserved
1 RW 1b'0 MXR 19 Make eXecutable Readable
1 RW 1b'0 PUM 18 Protect User Memory bit modifies the privilege with which

loads access virtual memory

1 RW 1b'0 MPRV 17 Privilege level at which loads and stores execute

2 RW 2h'0 XS 16:15 Context switch reducing flags: 0=All Off; 1=None dirty or
clean, some on; 2=None dirty, some clean; 3=Some dirty

2 RW 2h'0 FS 14:13 Context switch reducing flags: 0=Off; 1=Initial; 2=Clean;
3=Dirty

2 RW 2h'0 MPP 12:11 Priviledge mode on MRET

2 RW 2h'0 HPP 10:9 Priviledge mode on HRET

1 RW 1b'0 SPP 8 Priviledge mode on SRET

1 RW 1b'0 MPIE 7 MIE prior to the trap

1 RW 1b'0 HPIE 6 HIE prior to the trap

1 RW 1b'0 SPIE 5 SIE prior to the trap

1 RW 1b'0 UPIE 4 UIE prior to the trap

1 RW 1b'0 MIE 3 Machine interrupt enable bit

1 RW 1b'0 HIE 2 Hypervisor interrupt enable bit

1 RW 1b'0 SIE 1 Super-user interrupt enable bit

1 RW 1b'0 UIE 0 User interrupt enable bit

Generated on
June 23, 2018

4.1 Debug Support Unit (DSU) 11

Machine Trap-Vector Base-Address Register (0x01828). ISA offset 0x305.

Bits Type Reset Field Name Definition
64 RW 64h'0 mtvec Trap-vector Base Address. The mtvec register is an XLEN-bit

read/write register that holds the base address of the M-mode trap
vector.

Machine Exception Program Counter (0x01A08). ISA offset 0x341.

Bits Type Reset Field Name Definition
64 RW 64h'0 mepc Machine mode exception program counter. Instruction MRET is

used to return from traps in User Mode into specified instruction
pointer. On implementations that do not support instruction-set ex-
tensions with 16-bit instruction alignment, the two low bits (mepc[1:0])
are always zero.

Machine Cause Register (0x01A10). ISA offset 0x342.

Bits Type Reset Field Name Bits Definition

1 RW 1b'0 Interrupt 63 The Interrupt bit is set if the trap was caused by an inter-
rupt.

63 RW 63h'0 Exception Code 62:0 Exception code. The Exception Code field contains a
code identifying the last exception. Table 3.6 lists the pos-
sible machine-level exception codes.

Machine Cause Register (0x01A18). ISA offset 0x343.

Bits Type Reset Field Name Bits Definition
64 RW 64h'0 mbadaddr 63:0 Exception address. When a hardware breakpoint is

triggered, or an instruction-fetch, load, or store address-
misaligned or access exception occurs, mbadaddr is written
with the faulting address. mbadaddr is not modified for other
exceptions.

Machine ISA Register (0x07880). ISA offset 0xf10.

Bits Type Reset Field Name Bits Description

2 RO 2h'2 Base (WARL) 63:62 Integer ISA width: 1=32 bits; 2=64 bits; 3=128
bits.

34 RO 64h'0 WIRI 61:28 Reserved.
28 RO 28h'141181 Extension (WARL) 27:0 Supported ISA extensions. See priviledge-isa

datasheet.

Generated on
June 23, 2018

4.1 Debug Support Unit (DSU) 12

Machine Vendor ID (0x07888). ISA offset 0xf11.

Bits Type Reset Field Name Bits Description

64 RO 64h'0 Vendor 63:0 Vendor ID. read-only register encoding the manufacturer of
the part. This register must be readable in any implementa-
tion, but a value of 0 can be returned to indicate the field is
not implemented or that this is a non-commercial implemen-
tation.

Machine Architecture ID Register (0x07890). ISA offset 0xf12.

Bits Type Reset Field Name Bits Description

64 RO 64h'0 marchid 63:0 Architecture ID. Read-only register encoding the base mi-
croarchitecture of the hart. This register must be readable in
any implementation, but a value of 0 can be returned to indi-
cate the field is not implemented. The combination of mven-
dorid and marchid should uniquely identify the type of hart
microarchitecture that is implemented.

Machine implementation ID Register (0x07898). ISA offset 0xf13.

Bits Type Reset Field Name Bits Description

64 RO 64h'0 mimplid 63:0 Implementation ID. CSR provides a unique encoding of the
version of the processor implementation. This register must
be readable in any implementation, but a value of 0 can be
returned to indicate that the field is not implemented.

Hart ID Register (0x078A0). ISA offset 0xf14.

Bits Type Reset Field Name Bits Description

64 RO 64h'0 mhartid 63:0 Integer ID of hardware thread. Hart IDs mightnot necessar-
ily be numbered contiguously in a multiprocessor system, but
at least one hart musthave a hart ID of zero.

4.1.1.2 General CPU Registers Region (32 KB)

CPU integer registers (0x08000).

Offset Bits Type Reset Name Definition

0x08000 64 RW 64h'0 zero x0. CPU General Integer Register hardware connected to zero.

0x08008 64 RW 64h'0 ra x1. Return address.

Generated on
June 23, 2018

4.1 Debug Support Unit (DSU) 13

Offset Bits Type Reset Name Definition

0x08010 64 RW 64h'0 sp x2. Stack pointer.

0x08018 64 RW 64h'0 gp x3. Global pointer.

0x08020 64 RW 64h'0 tp x4. Thread pointer.

0x08028 64 RW 64h'0 t0 x5. Temporaries 0.

0x08030 64 RW 64h'0 t1 x6. Temporaries 1.

0x08038 64 RW 64h'0 t2 x7. Temporaries 2.

0x08040 64 RW 64h'0 s0/fp x8. CPU General Integer Register 'Saved register 0/ Frame
pointer'.

0x08048 64 RW 64h'0 s1 x9. Saved register 1.

0x08050 64 RW 64h'0 a0 x10. Function argument 0. It is also used to save return value.

0x08058 64 RW 64h'0 a1 x11. Function argument 1.

0x08060 64 RW 64h'0 a2 x12. Function argument 2.

0x08068 64 RW 64h'0 a3 x13. Function argument 3.

0x08070 64 RW 64h'0 a4 x14. Function argument 4.

0x08078 64 RW 64h'0 a5 x15. Function argument 5.

0x08080 64 RW 64h'0 a6 x16. Function argument 6.

0x08088 64 RW 64h'0 a7 x17. Function argument 7.

0x08090 64 RW 64h'0 s2 x18. Saved register 2.

0x08098 64 RW 64h'0 s3 x19. Saved register 3.

0x080a0 64 RW 64h'0 s4 x20. Saved register 4.

0x080a8 64 RW 64h'0 s5 x21. Saved register 5.

0x080b0 64 RW 64h'0 s6 x22. Saved register 6.

0x080b8 64 RW 64h'0 s7 x23. Saved register 7.

0x080c0 64 RW 64h'0 s8 x24. Saved register 8.

0x080c8 64 RW 64h'0 s9 x25. Saved register 9.

0x080d0 64 RW 64h'0 s10 x26. Saved register 10.

0x080d8 64 RW 64h'0 s11 x27. Saved register 11.

0x080e0 64 RW 64h'0 t3 x28. Temporaries 3.

0x080e8 64 RW 64h'0 t4 x29. Temporaries 4.

0x080f0 64 RW 64h'0 t5 x30. Temporaries 5.

0x080f8 64 RW 64h'0 t6 x31. Temporaries 6.

0x08100 64 RO 64h'0 pc Instruction pointer. Cannot be modified because shows the
latest executed instruction address

0x08108 64 RW 64h'0 npc Next Instruction Pointer

4.1.1.3 Run Control and Debug support Region (32 KB)

Run control/status registers (0x10000).

Bits Type Reset Field Name Bits Description
44 RW 61h'0 Reserved 63:6 Reserved.
16 RO 16h'0 core_id 15:4 Core ID.
1 RW 1b'0 Reserved 3 Reserved.
1 RO 1b'0 breakpoint 2 Breakpoint. Status bit is set when CPU was halted due

the EBREAK instruction.

Generated on
June 23, 2018

4.1 Debug Support Unit (DSU) 14

Bits Type Reset Field Name Bits Description

1 WO 1b'0 stepping_mode 1 Stepping mode. This bit enables stepping mode if the
Register 'steps' is non zero.

1 RW 1b'0 halt 0 Halt mode. When this bit is set CPU pipeline is in the
halted state. CPU can be halted at any time without impact
on processing data.

Stepping mode Steps registers (0x10008).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 steps 63:0 Step counter. Total number of instructions that should exe-
cute CPU before halt. CPU is set into stepping using 'step-
ping mode' bit in Run Control register.

Clock counter registers (0x10010).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 clock_cnt 63:0 Clock counter. Clock counter is used for hardware compu-
tation of CPI rate. Clock counter isn't incrementing in Halt
state.

Step counter registers (0x10018).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 executed_cnt 63:0 Step counter. Total number of executed instructions. Step
counter is used for hardware computation of CPI rate.

Breakpoint Control registers (0x10020).

Bits Type Reset Field Name Bits Description
63 RW 63h'0 Reserved 63:1 Reserved
1 RW 1b'0 trap_on_break 0 Trap On Break. Generate exception 'Breakpoint' on E←↩

BRAK instruction if this bit is set or just Halt the pipeline
otherwise.

Add hardware breakpoint registers (0x10028).

Generated on
June 23, 2018

4.1 Debug Support Unit (DSU) 15

Bits Type Reset Field Name Bits Description

64 RW 64h'0 add_break 63:0 Add HW breakpoint address. Add specified address into
Hardware breakpoint stack. In case of matching Instruction
Pointer (pc) and any HW breakpoint there's injected EBREAK
instruction on hardware level.

Remove hardware breakpoint registers (0x10030).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 rem_break 63:0 Remove HW breakpoint address. Remove specified ad-
dress from Hardware breakpoints stack.

Breakpoint Address Fetch registers (0x10038).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 br_address_fetch 63:0 Breakpoint fetch address. Specify address that will be
ignored by Fetch stage and used Breakpoint Fetch In-
struction value instead. This logic is used to avoid re-
writing EBREAK into memory.

Breakpoint Instruction Fetch registers (0x10040).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 br_instr_fetch 63:0 Breakpoint fetch instruction. Specify instruction that
should executed instead of fetched from memory in a case
of matching Breapoint Address Fetch register and Instruc-
tion pointer (pc).

4.1.1.4 Local DSU Region (32 KB)

Soft Reset registers (0x18000).

Bits Type Reset Field Name Bits Description
63 RW 63h'0 Reserved 63:1 Reserved.
1 RW 1b'0 soft_reset 0 Soft Reset. Status bit is set when CPU was halted due the

EBREAK instruction.

Miss Access counter registers (0x18008).

Generated on
June 23, 2018

4.2 GPIO Controller 16

Bits Type Reset Field Name Bits Description

64 RO 64h'0 miss_access_cnt 63:0 Miss Access counter. This value as an additional de-
bugging informantion provided by AXI Controller. It is
possible to enable interrupt generation in Interrupt Con-
troller on miss-access.

Miss Access Address registers (0x18010).

Bits Type Reset Field Name Bits Description

64 RO 64h'0 miss_access_addr 63:0 Miss Access address. Address of the latest miss-
accessed transaction. This information comes from
AXI Controller.

Bus Utilization registers (0x18040 + n∗2∗sizeof(uint64_t)).

Offset Bits Type Reset Name Definition

0x18040 64 RO 64h'0 w_cnt Write transactions counter for master 0. Master 0 is the R←↩

IVER CPU by default.

0x18048 64 RO 64h'0 r_cnt Read transactions counter for master 0.
0x18050 64 RO 64h'0 w_cnt Write transactions counter for master 1. Master 1 is unused

in a case of configuration with RIVER CPU.

0x18058 64 RO 64h'0 r_cnt Read transactions counter for master 1.
0x18060 64 RO 64h'0 w_cnt Write transactions counter for master 2. Master 2 is the G←↩

RETH by default (Ethernet Controller with master interface).

0x18068 64 RO 64h'0 r_cnt Read transactions counter for master 2.

4.2 GPIO Controller

4.2.1 GPIO registers mapping

GPIO Controller acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address
location for our implementation is defined by 0x80000000. Memory size is 4 KB.

LED register (0x000).

Bits Type Reset Field Name Bits Description
24 RW 24h'0 rsrv 24 Reserved
8 RW 8h'0 led 7:0 LEDs. Written value directly assigned on SoC output pins

and can be used as test signals.

DIP register (0x004).

Generated on
June 23, 2018

4.3 General Purpose Timers 17

Bits Type Reset Field Name Bits Description

28 RO 28h'0 rsrv 28 Reserved
4 RO - dip 3:0 DIPs. Input configuration pins value (Read-Only). Configura-

tion pin meaning depends of the used FW.

Set of temporary registers (0x008).

Offset Bits Type Reset Name Definition

0x008 32 RW 32h'0 reg32←↩

_2
Temporary register 2. FW specific register used for debugging
purposes.

0x00C 32 RW 32h'0 reg32←↩

_3
Temporary register 3.

0x010 32 RW 32h'0 reg32←↩

_4
Temporary register 4.

0x014 32 RW 32h'0 reg32←↩

_5
Temporary register 5.

0x018 32 RW 32h'0 reg32←↩

_6
Temporary register 6.

4.3 General Purpose Timers

4.3.1 GPTimers overview

This GPTimers implementation can be additionally configured using the following generic parameters.

Name Default Description

irqx 0 Interrupt pin index This value is used only as argument in output Plug'n'Play configura-
tion.

tmr_total 2 Total Number of Timers. Each timer is the 64-bits counter that can be used for interrupt
generation or without.

4.3.2 GPTimers registers mapping

GPTimers device acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address
location for our implementation is defined by 0x80005000. Memory size is 4 KB.

High Precision Timer register (Least Word) (0x000).

Bits Type Reset Field Name Bits Description
64 RW 64h'0 highcnt 63:0 High precision counter. This counter isn't used as a source

of interrupt and cannot be stopped from SW.

High Precision Timer register (Most Word) (0x004).

Generated on
June 23, 2018

4.3 General Purpose Timers 18

Bits Type Reset Field Name Bits Description
64 RW 64h'0 highcnt 63:0 High precision counter. This counter isn't used as a source

of interrupt and cannot be stopped from SW.

Pending Timer IRQ register (0x008).

Bits Type Reset Field Name Bits Description
32-tmr_total RW 0 reserved 31:tmr_total Reserved.

tmr_total RW 0 pending tmr_total-
1:0

Pending Bit. Each timer can be configured to
generate interrupt. Simaltenously with inter-
rupt is rising pending bit that has to be lowed
by Software.

Timer[0] Control register (0x040).

Bits Type Reset Field Name Bits Description
30 RW 30h'0 reserved 31:2 Reserved.
1 RW 1b'0 irq_ena 1 Interrupt Enable. Enable the interrupt generation when the

timer reaches zero value.
0 RW 1b'0 count_ena 0 Count Enable. Enable/Disable counter.

Timer[0] Current Value register (0x048).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 value 63:0 Timer Value. Read/Write register with counter's value. When
it equals to 0 the 'init_value' will be used to re-initialize
counter.

Timer[0] Init Value register (0x050).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 init_value 63:0 Timer Init Value. Read/Write register is used for cycle timer
re-initializtion. If init_value = 0 and value != 0 then the timer
is used as a 'single shot' timer.

Timer[1] Control register (0x060 = 0x040 + Idx ∗ 32).

Bits Type Reset Field Name Bits Description
30 RW 30h'0 reserved 31:2 Reserved.
1 RW 1b'0 irq_ena 1 Interrupt Enable. Enable the interrupt generation when the

timer reaches zero value.

Generated on
June 23, 2018

4.4 Interrupt Controller 19

Bits Type Reset Field Name Bits Description

0 RW 1b'0 count_ena 0 Count Enable. Enable/Disable counter.

Timer[1] Current Value register (0x068 = 0x48 + Idx ∗ 32).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 value 63:0 Timer Value. Read/Write register with counter's value. When
it equals to 0 the 'init_value' will be used to re-initialize
counter.

Timer[1] Init Value register (0x070 = 0x050 + Idx ∗ 32).

Bits Type Reset Field Name Bits Description

64 RW 64h'0 init_value 63:0 Timer Init Value. Read/Write register is used for cycle timer
re-initializtion. If init_value = 0 and value != 0 then the timer
is used as a 'single shot' timer.

4.4 Interrupt Controller

4.4.1 IRQ assignments

IRQ pins configuration is the part of generic constants defined in file ambalib/types_amba4.vhd. Number of inter-
rupts and its indexes can changed in future releases.

Pin Name Description

0 Unused Zero Interrupt pin is unsued and connected to Ground.

1 UART1 Uart 1 IRQ. UART device used this line to signal CPU via Interrupt Controller that new
data is available or device ready to accept new Rx data.

2 ETHMAC Ethernet IRQ.
3 GPTIMERS General Purpose Timers IRQ.

4 MISS_ACCESS Memory Miss Access IRQ. This interrupt is generated by AXI Controller in a case of
access to unmapped memory region.

5 GNSSENGINE Gnss Engine IRQ. Device Specific 1 msec interrupt that schedules critical Navigation
Task.

4.4.2 IRQ Controller registers mapping

IRQ Controller acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address
location for our implementation is defined by 0x80002000. Memory size is 4 KB.

Interrupts Mask register (0x000).

Generated on
June 23, 2018

4.4 Interrupt Controller 20

Bits Type Reset Field Name Bits Description
32-N RW h'0 reserved 31:N Reserved

N RW all 1 mask N-
1:0

IRQ mask. 1 equals interrupt disabled; 0 is enabled.

Pending Interrupts register (0x004).

Bits Type Reset Field Name Bits Description

32-N RO h'0 reserved 31:N Reserved
N RO 0 pending N-

1:0
Pending Bits. 1 signals rised interrupt. This bit is cleared by
writing 1 into the register 'Clear IRQ' or writing 1 into 'Lock
Register'.

Clear Interrupt Mask register (0x008).

Bits Type Reset Field Name Bits Description

32-N WO h'0 reserved 31:N Reserved
N WO 0 clear_bit N-

1:0
Clear IRQ line. Clear Pending interrupt register bits that are
marked with 1s.

Raise Interrupt Mask register (0x00C).

Bits Type Reset Field Name Bits Description

32-N WO h'0 reserved 31:N Reserved
N WO 0 raise_irq N-

1:0
Rise specified IRQ line manually. This register can be
used for test and debugging either as for 'system calls'.

ISR table address (low word) (0x010).

Bits Type Reset Field Name Bits Description
32 WR 0 isr_table 31:0 Interrupts table address LSB. This register stores address

where located ISR table. This value must be intialized be
Software.

ISR table address (high word) (0x014).

Bits Type Reset Field Name Bits Description
32 WR 0 isr_table 31:0 Interrupts table address MSB. This register stores address

where located ISR table. This value must be intialized be
Software.

Generated on
June 23, 2018

4.4 Interrupt Controller 21

ISR cause code (low word) (0x018).

Bits Type Reset Field Name Bits Description
32 WR 0 dbg_cause 31:0 Cause of te Interrupt LSB. This register stores the latest

cause of the interrupt. This value is optional and updates by
ROM ISR handler in current implementation.

ISR cause code (high word) (0x01C).

Bits Type Reset Field Name Bits Description
32 WR 0 dbg_cause 31:0 Cause of the Interrupt MSB. This register stores the latest

cause of the interrupt. This value is optional and updates by
ROM ISR handler in current implementation.

Instruction Pointer before trap (low word) (0x020).

Bits Type Reset Field Name Bits Description
32 WR 0 dbg_epc 31:0 npc[31:0] register value before trap . This register stores

copy of xEPC value. This value is optional and updates by
ROM ISR handler in current implementation.

Instruction Pointer before trap (high word) (0x024).

Bits Type Reset Field Name Bits Description
32 WR 0 dbg_epc 31:0 npc[63:32] register value before trap. This register stores

copy of xEPC value. This value is optional and updates by
ROM ISR handler in current implementation.

Lock interrupt register (0x028).

Bits Type Reset Field Name Bits Description
31 WR 31h'0 reserved 31:1 Reserved
1 WR 1b' lock 0 Lock interrupts. Disabled all interrupts when this bit is 1. All

new interrupt request marked as postponed and will be raised
when 'lock' signal will be cleared.

Lock interrupt register (0x02C).

Generated on
June 23, 2018

4.5 UART 22

Bits Type Reset Field Name Bits Description
32 WR 0 irq_idx 31:0 Interrupt Index. This register stores current interrupt index

while in ISR handler. This value is optional and updates by
ROM ISR handler in current implementation.

4.5 UART

4.5.1 Overview

This UART implementation can be additionally configured using the following generic parameters.

Name Default Description

irqx 0 Interrupt pin index This value is used only as argument in output Plug'n'Play configuration.

fifosz 16 FIFO size. Size of the Tx and Rx FIFOs in bytes.

4.5.2 UART registers mapping

UART acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address location
for our implementation is defined by 0x80001000. Memory size is 4 KB.

Control Status register (0x000).

Bits Type Reset Field Name Bits Description
16 RW 16h'0 Reserved 31:16 Reserved.
1 RW 1b'0 parity_bit 15 Enable parity checking. Serial port setting setup by SW.

1 RW 1b'0 tx_irq_ena 14 Enable Tx Interrupt. Generate interrupt when number of
symbol in output FIFO less than defined in Tx Threshold
register.

1 RW 1b'0 rx_irq_ena 13 Enable Rx Interrupt. Generate interrupt when number of
available for reading symbol greater or equalt Rx Threshold
register.

3 RW 3h'0 Reserved 12:10 Reserved.
1 RO 1b'0 err_stopbit 9 Stop Bit Error. This bit is set when the Stoping Bit has the

wrnog value.

1 RO 1b'0 err_parity 8 Parity Error. This bit is set when the Parity error occurs.
Will be automatically cleared by next received symbol if the
parity OK.

2 RW 2h'0 Reserved 7:6 Reserved.
1 RO 1b'1 rx_fifo_empty 5 Receive FIFO is Empty.

1 RO 1b'0 rx_fifo_fifo 4 Receive FIFO is Full.
2 RW 2h'0 Reserved 3:2 Reserved.
1 RO 1b'1 tx_fifo_empty 1 Transmit FIFO is Empty.

1 RO 1'b0 tx_fifo_full 0 Transmit FIFO is Full.

Scaler register (0x004).

Generated on
June 23, 2018

4.6 SPI Controller 23

Bits Type Reset Field Name Bits Description

32 RW 32h'0 scaler 31:16 Scale threshold. This register value is used to transform
System Bus clock into port baudrate.

Data register (0x010).

Bits Type Reset Field Name Bits Description
24 RW 28h'0 Reserved 31:8 Reserved.
8 RW 8h'0 data 7:0 Data. Access to Tx/Rx FIFO data. Writing into this register

put data into Tx FIFO. Reading is accomplished from Rx F←↩

IFO.

4.6 SPI Controller

4.6.1 Overview

This SPI controller is the specially developed module to support the following Flash memory ICs:

• Microchip 25AA1024 and 25LC1024.

• 1636PP52Y

Read/write access to the controller's registers directly generate SPI signals sequence (nCS, SDO, SCK) to form
read/write transaction request. AXI4 bus transaction is holded and CPU (or DMA) waits the response from the SPI
interface all the time while SPI is active.

The following generic parameters are used to configure the SPI controllers:

Name Default Description

xaddr 0 Base address. Bus address bits [31:12] allocated for the controller.

xmask 16#fffff# Address mask. Bus address mask bits used to specify allocated size (default 4 KB, mini-
mum).

4.6.2 Mapped Registers

SPI controller module acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default
address location for this implementation is defined as 0x00200000 with allocated memory size 256 KB.

The lower 128 KB region is used for the direct access to the external Flash memory via SPI interface. The control
registers are mapped at offset 0x20000 (upper 128 KB).

Flash Region 128 KB (0x00000..0x20000).

Read access to this region directly converted into SPI read request. 4 and 8-bytes read requests is supported by
this SPI controller.

Write requests to this region doesn't generate any SPI activity. All write data is writing ONLY into the local Page
Buffer (256 Bytes length). 4 or 8-bytes write access is supported. Address bits [31:8] are ignored and must be

Generated on
June 23, 2018

4.6 SPI Controller 24

specified on write access into Flash Page Write register.

Scaler register (0x20000).

Bits Type Reset Field Name Bits Description

32 RW 0 scaler 31:0 Clock Scaling Rate. RW register is specifies the SPI fre-
quency relative Bus Frequency. Fspi = Fbus / (2∗scaler).

Flash STATUS (0x20010).

Bits Type Field Name Bits Description

32 RW STATUS 7:0 STATUS. Flash STATUS register read via SPI. Read Command ID =
0x05; Write Command ID = 0x01.

Flash ID (0x20018).

Bits Type Field Name Bits Description

8 RO ID 7:0 Manufacturer ID. Read Only value read from Flash: 0x29 is the default
value of Microchip. Command ID = 0xAB.

Flash Write Enable (0x20020).

Bits Type Field Name Bits Description

32 WO WE 31:0 Flash Write Enable. Writing to this register generates SPI transasction
with command ID = 0x06. Write value is ignored.

Flash Page Write (0x20028).

Bits Type Field Name Bits Description

8 WO ignored 7:0 Ignored.

9 WO PAGE_ADDR 16:8 Page address. Page Address which is used to store current Page
Buffer (256 Bytes) into external Flash. Command ID = 0x02.

15 WO ignored 31:17 Ignored.

Flash Write Disable (0x20030).

Generated on
June 23, 2018

4.7 Plug'n'Play support module 25

Bits Type Field Name Bits Description

32 WO WD 31:0 Flash Write Disable. Writing to this register generates SPI transasc-
tion with command ID = 0x04. Write value is ignored.

Flash Page Erase (0x20038).

Bits Type Field Name Bits Description

24 WO PAGE_ADDR 23:0 Flash Page Erase. Erase external Flash page with specified ad-
dress. Command ID = 0x42.

8 WO ignored 31:24 Ignored.

Flash Sectore Erase (0x20040).

Bits Type Field Name Bits Description

24 WO SECTOR_ADDR 23:0 Flash Sector Erase. Erase external Flash sector with specified
address. Command ID = 0xDB.

8 WO ignored 31:24 Ignored.

Flash Chip Erase (0x20048).

Bits Type Field Name Bits Description

32 WO ignored 31:0 Chip Erase. Writing any value to this register generates SPI transasc-
tion with command ID = 0xC7. Write value is ignored.

Deep Power-Down mode (0x20050).

Bits Type Field Name Bits Description

32 WO ignored 31:0 Deep Power-Down mode. Writing any value to this register generates
SPI transasction with command ID = 0xB9 that sends ICs into Power-
Down mode. Write value is ignored.

4.7 Plug'n'Play support module

4.7.1 PNP registers mapping

PNP module acts like a slave AMBA AXI4 device that is directly mapped into physical memory. Default address
location for our implementation is defined as 0xFFFFF000. Memory size is 4 KB.

HW ID register (0x000).

Generated on
June 23, 2018

4.7 Plug'n'Play support module 26

Bits Type Reset Field Name Bits Description

32 RO CFG_HW_ID hw_id 31:0 HW ID. Read only SoC identificator. Now it con-
tains manually specified date in hex-format. Can be
changed via CFG_HW_ID configuration parameter.

FW ID register (0x004).

Bits Type Reset Field Name Bits Description

32 RW 32'h0 fw_id 31:0 Firmware ID. This value is modified by bootloader or user's
firmware. Can be used to simplify firmware version tracking.

AXI Slots Configuration Register (0x008).

Bits Type Reset Field Name Bits Description

8 RO CFG_TECH tech 7:0 Technology ID. Read Only value
specifies the target configuration.
Possible values: inferred, virtex6,
kintex7. Other targets ID could be
added in a future.

8 RO CFG_NASTI_SLAVES_TOTAL slaves 15:8 Total number of AXI slave
slots. This value specifies max-
imum number of slave devices
connected to the system bus.
If device wasn't connected the
dummy signals must be applied
to the slave interface otherwise
SoC behaviour isn't defined.

8 RO CFG_NASTI_MASTER_TOTAL masters 23:16 Total number of AXI master
slots. This value specifies max-
imum number of master devices
connected to the system bus.
Slot signals cannot be uncon-
nected either.

8 RO 8'h0 adc_detect 31:24 ADC clock detector. This value
is used by GNSS firmware to de-
tect presence of the ADC clock
frequency that allows to detect
presence of the RF front-end
board.

Debug IDT register (0x010).

Bits Type Reset Field Name Bits Description

64 RW 64'h0 idt 63:0 Debug IDT. This is debug register used by GNSS firmware
to store debug information.

Generated on
June 23, 2018

4.7 Plug'n'Play support module 27

Debug Memory Allocation Pointer register (0x018).

Bits Type Reset Field Name Bits Description
64 RW 64'h0 malloc_addr 63:0 Memory Allocation Pointer. This is debug register used by

GNSS firmware to store 'heap' pointer and allows to debug
memory management.

Debug Memory Allocation Size register (0x020).

Bits Type Reset Field Name Bits Description

64 RW 64'h0 malloc_size 63:0 Memory Allocation size. This is debug register used by G←↩

NSS firmware to store total allocated memory size.

Debug Firmware1 register (0x028).

Bits Type Reset Field Name Bits Description

64 RW 64'h0 fwdbg1 63:0 Firmware debug1. This is debug register used by GNSS
firmware to store temporary information.

4.7.2 PNP Device descriptors

Our SoC implementaion provides capability to read in real-time information about mapped devices. Such information
is packed into special device descriptors. Now we can provide 3 types of descriptors:

• Master device descriptor

• Slave device descriptor

• Custom device descriptor

All descriptors mapped sequentually starting from 0xFFFFF040. Each descriptor implements field 'size' in Bytes
that specifies offset to the next mapped descriptor.

Master device descriptor

Bits Description

[7:0] Descriptor Size. Read Only value specifies size in Bytes of the current descriptor. This value should
be used as offset to the next descriptor. Master descriptor size is hardwired to PNP_CFG_MASTE←↩

R_DESCR_BYTES value (8'h08).

[9:8] Descriptor Type. Master descriptor type is hardwired to PNP_CFG_TYPE_MASTER value (2'b01).

[31:10] Reserved.
[47:32] Device ID. Unique Master identificator.

[63:48] Vendor ID. Unique Vendor identificator.

Generated on
June 23, 2018

4.7 Plug'n'Play support module 28

Slave device descriptor

Bits Description

[7:0] Descriptor Size. Read Only value specifies size in Bytes of the current descriptor. This value
should be used as offset to the next descriptor. Slave descriptor size is hardwired to PNP_CFG_←↩

SLAVE_DESCR_BYTES value (8'h10).

[9:8] Descriptor Type. Slave descriptor type is hardwired to PNP_CFG_TYPE_SLAVE value (2'b10).

[15:10] Reserved.
[23:16] IRQ ID. Interrupt line index assigned to the device.

[31:24] Reserved.
[47:32] Device ID. Unique Master identificator.

[63:48] Vendor ID. Unique Vendor identificator.

[75:64] zero. Hardwired to X"000".

[95:76] Base Address Mask specifies the memory region allocated for the device.

[107:96] zero. Hardwired to X"000".

[127:108] Base Address value of the device.

Generated on
June 23, 2018

Chapter 5

RISC-V debugger

5.1 Overview

This debugger was specially developed as a software utility to interact with our SOC implementation in riscv←↩

_soc repository. The main purpose was to provide convinient way to develop and debug our Satellite Navigation
firmware that can not be debugged by any other tool provided RISC-V community. Additionally, we would like to
use the single unified application capable to work with Real and Simulated platforms without any modification of
source code. Debugger provides base functionality such as: run control, read/write memory, registers and CSRs,
breakpoints. It allows to reload FW image and reset target. Also we are developing own version of the CPU simulator
(analog of spike) that can be extended with peripheries models to Full SOC simulator. These extensions for the
debugger simplify porting procedure (Zephyr OS for an example) so that simulation doesn't require any hardware
and allows to develop SW and HW simultaneously.

5.2 Project structure

General idea of the project is to develop one Core library providing API methods for registering classes,
services, attributes and methods to interact with them. Each extension plugin registers one or several
class services performing some usefull work. All plugins are built as an independent libraries that are opening by
Core library at initialization stage with the call of method plugin_init(). All Core API methods start with RISCV_...
prefix:

void RISCV_register_class(IFace *icls);

IFace *RISCV_create_service(IFace *iclass, const char *name,
AttributeType *args);

IFace *RISCV_get_service(const char *name);
...

Configuration of the debugger and plugins is fully described in JSON formatted configuration files targets/target←↩

_name.json. These files store all instantiated services names, attributes values and interconnect among plugins.

This configuration can be saved to/load from file at any time. By default command exit will save current debugger
state into file (including full command history).

Note

You can manually add/change new Registers/CSRs names and indexes by modifying this config file without
changing source code.

5.3 Ethernet setup 30

Folders description

1. libdgb64g - Core library (so/dll) that provides standard API methods defined in file api_core.h.

2. appdbg64g - Executable (exe) file implements functionality of the console debugger.

3. Plugins:

(a) simple_plugin - Simple plugin (so/dll library) just for demonstration of the integration with debugger.

(b) cpu_fnc_plugin - Functional model of the RISC-V CPU (so/dll library).

(c) cpu_sysc_plugin - Precise SystemC model of RIVER CPU (so/dll library).

(d) socsim_plugin - Functional models of the peripheries and assembled board (so/dll library). This
plugin registers several classes: UART, GPIO, SRAM, ROMs and etc.

5.3 Ethernet setup

The Ethernet Media Access Controller (GRETH) provides an interface between an AMBA-AXI bus and Ethernet
network. It supports 10/100 Mbit speed in both full- and half-duplex modes. Integrated EDCL submodule implements
hardware decoding of UDP traffic and redirects EDCL request directly on AXI system bus. The AMBA interface
consists of an AXI slave interface for configuration and control and an AXI master interface for transmit and receive
data. There is one DMA engine for the transmitter and one for receiver. EDCL submodule and both DMA engines
share the same AXI master interface.

5.3.1 Configure Host Computer

To make development board visible in your local network your should properly specify connection properties. In
this chapter I will show how to configure the host computer (Windows 7 or Linux) to communicate with the FPGA
hardware over Ethernet.

Note

If you also want simultaneous Internet access your host computer requires a second Ethernet port. I couldn't
find workable configuration via router.

Generated on
June 23, 2018

5.3 Ethernet setup 31

Warning

I recommend you to make restore point before you start.

5.3.2 Configure Windows Host

Let's setup the following network configuration that allows to work with FPGA board and to be connected to Internet.
I use different Ethernet ports and different subnets (192.168.0.x and 192.168.1.x accordingly).

Host IP and subnet definition:

1. Open cmd console.
2. Use ipconfig command to determine network settings.

ipconfig /all

3. Find your IP address (in my case it's 192.168.1.4)

4. Check and change if needed default IP address of SOC as follow.

Setup hard-reset FPGA IP address:

1. Open in editor rocket_soc.vhd.

2. Find place where grethaxi module is instantiated.

3. Change generic ipaddrh and ipaddrl parameters so that they belonged another subnet (Default values:
C0A8.0033 corresponding to 192.168.0.51) than Internet connection.

Configure the Ethernet card for your FPGA hardware

1. Load pre-built image file into FPGA board (located in ./rocket_soc/bit_files/ folder) or use your own one.

2. Open Network and Sharing Center via Control Panel

Generated on
June 23, 2018

5.3 Ethernet setup 32

1. Click on Local Area Connection 2 link

Generated on
June 23, 2018

5.3 Ethernet setup 33

1. Click on Properties to open properties dialog.

Generated on
June 23, 2018

5.3 Ethernet setup 34

1. Disable all network services except Internet Protocol Version 4 as shown on figure above.

2. Select enabled service and click on Properties button.

Generated on
June 23, 2018

5.3 Ethernet setup 35

1. Specify unique IP as shown above so that FPGA and your Local Connection were placed in the same subnet.

2. Leave the subnet mask set to the default value 255.255.255.0.

3. Click OK.

Check connection

1. Check presence of the Ethernet activity by blinking LEDs near the Ethernet connector on FPGA board
2. Run arp command to see arp table entries.

arp -a -v

Generated on
June 23, 2018

5.3 Ethernet setup 36

1. MAC supports only ARP and EDCL requests on hardware level and it cannot respond on others without
properly installed software. By this reason ping won't work without running OS on FPGA target but it maybe
usefull to ping FPGA target so that it can force updating of the ARP table or use the commands:

ipconfig /release
ipconfig /renew

5.3.3 Configure Linux Host

Let's setup the similar network configuration on Linux host.

1. Check ipaddrh and ipaddrl values that are hardcoded on top-level of SOC (default values: C0A8.0033
corresponding to 192.168.0.51).

Generated on
June 23, 2018

5.4 Debug session 37

2. Set host IP value in the same subnet using the ifconfig command. You might need to enter a password
to use the sudo command.

% sudo ifconfig eth0 192.168.0.53 netmask 255.255.255.0

3. Enter the following command in the shell to check that the changes took effect:

% ifconfig eth0

5.3.4 Run Application

Now your FPGA board is ready to interact with the host computer via Ethernet. You can find detailed information
about MAC (GRETH) in GRLIB IP Core User's Manual.

There you can find:

1. DMA Configuration registers description (Rx/Tx Descriptors tables and entries).

2. EDCL message format.

3. GRLIB itself includes C-example that configure MAC Rx/Tx queues and start transmission of the 1500 Mbyte
of data to define Bitrate in Mbps.

We provide debugger functionality via Ethernet. See Debugger description page.

5.4 Debug session

5.4.1 Plugins interaction

Core library uses UDP protocol to communicate with all targets: FPGA or simulators. The general structure is
looking like on the following figure:

or with real Hardware

GUI plugin uses QT-libraries and interacts with the core library using the text console input interface. GUI generates
the same text commands that are available in debugger console for any who's using this debugger. That's why any
presented in GUI widgets information can be achieved in console mode.

Generated on
June 23, 2018

http://gaisler.com/products/grlib/grip.pdf

5.4 Debug session 38

5.4.2 Start Debugger

We provide several targets that can run software (bootloader, firmware or user specific application) without any
source code modifications:

Start Configuration Description

$./_run_functional_sim.sh[bat] Functional RISC-V Full System Model

$./_run_systemc_sim.sh[bat] Use SystemC Precise Model of RIVER CPU

$./_run_fpga_gui.sh[bat] FPGA board. Default port 'COM3', TAP IP = 192.168.0.51

To run debugger with the real FPGA target connected via Ethernet do:

cd rocket_soc/debugger/win32build/debug
_run_functional_sim.bat

The result should look like on the picture below:

Example of the debug session

Switch ON all User LEDs on board:

riscv# help -- Print full list of commands
riscv# csr MCPUID -- Read supported ISA extensions
riscv# read 0xfffff000 20 -- Read 20 bytes from PNP module
riscv# write 0x80000000 4 0xff -- Write into GPIO new LED value
riscv# loadelf helloworld -- Load elf-file to board RAM and run

Console mode view

Generated on
June 23, 2018

5.4 Debug session 39

5.4.3 Debug Zephyr OS kernel with symbols

Build Zephyr kernel from scratch using our patches enabling 64-bits RISC-V architecture support:

$ mkdir zephyr_160
$ cd zephyr_160
$ git clone https://gerrit.zephyrproject.org/r/zephyr
$ cd zephyr
$ git checkout tags/v1.6.0
$ cp ../../riscv_vhdl/zephyr/v1.6.0-riscv64-base.diff .
$ cp ../../riscv_vhdl/zephyr/v1.6.0-riscv64-exten.diff .
$ git apply v1.6.0-riscv64-base.diff
$ git apply v1.6.0-riscv64-exten.diff

Then build elf-file:

$ export ZEPHYR_BASE=/home/zephyr_160/zephyr
$ cd zephyr/samples/shell
$ make ARCH=riscv64 CROSS_COMPILE=/home/your_path/gnu-toolchain-rv64ima/bin/riscv64-unknown-elf- BOARD=

riscv_gnss 2>&1

Load debug symbols from elf-file without target reprogramming (or with):

riscv# loadelf zephyr.elf
riscv# loadelf zephyr.elf nocode

Generated on
June 23, 2018

5.4 Debug session 40

Now becomes available the following features:

• Stack trace with function names

• Function names in Disassembler including additional information for branch and jump instructions in column
'comment'.

• Symbol Browser with filter.

• Opening Disassembler and Memory Viewer widgets in a new window by name.

Debugger provides additional features that could simplify software development:

• Clock Per Instruction (CPI) hardware measure

• Bus utilization information

• Others. List of a new features is constantly increasing.

Generated on
June 23, 2018

5.5 Troubleshooting 41

5.5 Troubleshooting

5.5.1 Image Files not found

If you'll get the error messages that image files not found

To fix this problem do the following steps:

1. Close debugger console using exit command.

2. Open config_file_name.json file in any editor.

3. Find strings that specify these paths and correct them. Simulator uses the same images as VHDL platform

Generated on
June 23, 2018

5.5 Troubleshooting 42

for ROMs intialization. You can find them in 'rocket_soc/fw_images' directory. After that you should see
something like follow:

Debug your target. All commands that are available for Real Hardware absolutely valid for the Simulation. Users
shouldn't see any difference between these targets this is our purpose.

5.5.2 Can't open COM3 when FPGA is used

1. Open fpga_gui.json

2. Change value ['ComPortName','COM3'], on your one (for an example on ttyUSB0).

5.5.3 EDCL: No response. Break read transaction

This error means that host cannot locate board with specified IP address. Before you continue pass through the
following checklist:

Generated on
June 23, 2018

5.5 Troubleshooting 43

1. You should properly setup network connection and see FPGA board in ARP-table.

2. If you've changed default FPGA IP address:

(a) Open _run_fpga_gui.bat (∗.sh)

(b) Change value ['BoardIP','192.168.0.51'] on your one.

3. Run debugger

Generated on
June 23, 2018

Chapter 6

Python Frontend

6.1 Prerequisites

Current Debugger version is integrated with Python 2.7 using TCP connection and special Python module rcp dis-
tributed with this bundle. The following requirements should be met before start using the python's debug console:

• Debugger binary files built from the provided sources on Windows or Linux machines. It is possible to use
starting script _run_fpga_nogui_uartdbg (sh|bat) to load minimal configuration into Debugger without
GUI and SystemC support. It enables console mode only.

• Installed Python 2.7. To check the installed version:

>>> import sys
>>> sys.version

• FPGA board with loaded image instantiated 2 UARTs modules:

– UART1 is the slave device used for the user's output.

– UART2 is the master device (with DMA) used as the Test Access Point (TAP) to the system. Cannot be
used for the user's output.

6.2 UART TAP

• Build FPGA image from the provided sources (ML605 or KC705 are supported).

• Run FPGA board and load the prepared bit-file.

So now your target supports 2 debug interfaces:

• Debug via Ethernet

• Debug via UART

Actually both this interfaces can be used in the same time.There's no limitation on that.

Run minimal Debugger configuration with UART TAP support (and disabled Ethernet). For this run one of the
following starting files depending of your OS:

cd $(TOP)/river_demo/debugger/linuxbuild/bin
./_run_fpga_nogui_uartdbg.sh

6.2 UART TAP 45

or

cd $(TOP)/river_demo/debugger/win32build/Debug
_run_fpga_nogui_uartdbg.bat

Both os these scripts is doing the same thing actually. They start debugger application and point to the JSON-
configuration file /river_demo/debugger/targets/fpga_nogui_uartdbg.json

Modify this JSON-file accordingly with your Serial Port settings:

When debugger was started you should see the following debugger console:

Try different console commands to test debugger:

help
help read
regs

Generated on
June 23, 2018

6.3 Python Scripting 46

status
cpi
etc

Warning

UART TAP configured with hardcoded Scale Rate computed to give port speed 115200 when Bus Frequency
is 40 MHz.

This simple Debug configuration also includes TCP server to interact with the standalone Python scripts. Don't
close Debugger console and run Python as in the following part of the document.

6.3 Python Scripting

Just after your Debugger was started you actually is able to control the FPGA board via specially implemeted
JSON-based interface using TCP transport and the standalone frontend.

We provide special Python module rpc placed in the following folder:

cd $(TOP)/river_demo/debugger/scripts

You should be inside of folder scripts to import module otherwise you will need to modify sys.path variable.

Let's debug our FPGA board from python manually without running automatic script. For this, run python's shell
from the folder scripts:

E:\river_demo\debugger\scripts> python.exe

Generated on
June 23, 2018

6.3 Python Scripting 47

>>> import sys
>>> sys.version
>>> import rpc
>>> t = rpc.Remote()
>>> t.connect()

Try to call different method to debug FPGA board:

If you see the similar results then your debugger works properly and you can try to run demonstration scripts with
annotation placed in folder scripts. Close current python shell:

>>> t.connect()
>>> exit()

Generated on
June 23, 2018

6.3 Python Scripting 48

Run automatic scripts from the OS console:

python example.py

Congratulations! Now you are able to remotely debug your target using scripts.

Generated on
June 23, 2018

	1 RISC-V System-on-Chip VHDL IP libraries
	1.1 License
	1.2 Overview
	1.3 Library organization
	1.4 Top-Level structure

	2 RTL Verification
	2.1 Top-level simulation
	2.2 VCD-files automatic comparision
	2.2.1 Generating VCD-pattern form SystemC model
	2.2.2 Compare RIVER SystemC model relative RTL

	3 RISC-V Processor
	3.1 Overview
	3.2 Rocket CPU
	3.3 River CPU

	4 Peripheries
	4.1 Debug Support Unit (DSU)
	4.1.1 DSU registers mapping
	4.1.1.1 CSR Region (32 KB)
	4.1.1.2 General CPU Registers Region (32 KB)
	4.1.1.3 Run Control and Debug support Region (32 KB)
	4.1.1.4 Local DSU Region (32 KB)

	4.2 GPIO Controller
	4.2.1 GPIO registers mapping

	4.3 General Purpose Timers
	4.3.1 GPTimers overview
	4.3.2 GPTimers registers mapping

	4.4 Interrupt Controller
	4.4.1 IRQ assignments
	4.4.2 IRQ Controller registers mapping

	4.5 UART
	4.5.1 Overview
	4.5.2 UART registers mapping

	4.6 SPI Controller
	4.6.1 Overview
	4.6.2 Mapped Registers

	4.7 Plug'n'Play support module
	4.7.1 PNP registers mapping
	4.7.2 PNP Device descriptors

	5 RISC-V debugger
	5.1 Overview
	5.2 Project structure
	5.3 Ethernet setup
	5.3.1 Configure Host Computer
	5.3.2 Configure Windows Host
	5.3.3 Configure Linux Host
	5.3.4 Run Application

	5.4 Debug session
	5.4.1 Plugins interaction
	5.4.2 Start Debugger
	5.4.3 Debug Zephyr OS kernel with symbols

	5.5 Troubleshooting
	5.5.1 Image Files not found
	5.5.2 Can't open COM3 when FPGA is used
	5.5.3 EDCL: No response. Break read transaction

	6 Python Frontend
	6.1 Prerequisites
	6.2 UART TAP
	6.3 Python Scripting

